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1 | Basics

1.1 Set theory
I seem to recall having read somewhere that set theory is the starting point for all mathematics.
I don’t know about the rest, but it does seem appropriate enough as a foundation for algebra…

1.1.1 The empty set
The very special set that contains nothing, usually denoted as ∅, is contained in all others sets.
The usual proof of this is as follows: suppose that there existed a set S that did not contain ∅;
this would mean that ∅ contains at least one element that is not in S—but this contradicts the
definition of ∅ being the empty set.

This proof is not intuitionistically valid. An alternative is as follows: given any set A, we
always have that for any set B, it holds that A\ B ⊆ A. Thus if we set B = A, we conclude that
A\ A=∅ ⊆ A. This is intuitionistically valid, and setting A=∅ yields ∅ ⊆∅.

1.1.2 The powerset
Given a set S, its powerset is defined as the set of all of its subsets, and denoted as 2S. The next
result explains the reason for the terminology.
Theorem 1.1. Given any finite set S, we have |2S|= 2|S|.
Proof. We use induction on the size of S. It is true when S = ∅, because |∅| = 0 and 20 = 1
(note that 2∅ = {∅ }). But exponentiation to zero itself is a convention, so the argument might
be more convincing if we start from one: indeed, for any singleton set, { a }, its powerset has
two elements: {∅, { a } }. And accordingly, 21 = 2, so we have a base case.

Now suppose that S = { s1, . . . , sn } (we tacitly assume that all the si distinct), and that
|2S| = 2n, and let S′ = { s1, . . . , sn, sn+1 }. Let T be the set of all the elements of 2S, plus all the
elements of 2S, with sn+1 added to them. That is, T = 2S ∪ { x ∪ { sn+1 } | x ∈ 2S }. From the
fact that 2S ⊆ 2S′ , it is immediate that T ⊆ 2S′ . To show the reverse containment, consider an
arbitrary element of 2S′ . If it contains sn+1, it is in T ; if not, it is in 2S—but by construction, this
means that it is also in T . Hence, 2S′ ⊆ T—and also 2S′ = T .

Thus we conclude that the elements of 2S′ consist of all the elements of 2S, plus those same
elements, each joined (∪) with {sn+1}—hence, 2S′ has twice the size of 2S. In particular, |2S′ |=
2|2S|= 2|S|+1 = 2|S′|. ■
Remark 1.2. This result can also be proved via Pascal’s triangle, and the binomial theorem.
Indeed given a set S with n elements, the number of distinct subsets is given by:

n∑
k=0

�
n
k

�
(1.1)
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Chapter 1 – Basics 3

which the binomial theorem tells us equals 2n.1 4

1.1.3 On set difference and complementation
Definition 1.3 (Set difference). Given two sets A and B, the set difference of Aminus B, denoted
A\ B, is defined as the set { x ∈ A | x /∈ B }.
Theorem 1.4. Given sets A, B and C , we have that A\ B = A\ C if and only if A∩ B = A∩ C .

Proof. We have that A \ B ∪ (A∩ B) = A and A \ C ∪ (A∩ C) = A. As in both unions the sets
are disjoint, it follows that if A\ B = A\ C holds, then it must be case that A∩ B = A∩ C . And
vice-versa. ■

Theorem 1.5. Given sets A, B and C , the following hold:

(i) A\ (B ∩ C) = (A\ B)∪ (A\ C).

(ii) A\ (B ∪ C) = (A\ B)∩ (A\ C).

Proof. If A = ∅, then (i) and (ii) reduce to ∅ = ∅ ∪ ∅ and ∅ = ∅ ∩ ∅, which are trivially
true—so let A 6= ∅. If B = C = ∅, then (i) and (ii) reduce respectively to A = A ∪ A and
A= A∩ A, which are similarly true. So let at exactly one of B, C be different from ∅. Without
loss of generality, let B =∅, and C 6=∅. Then B ∩ C =∅, and B ∪ C = C , and thus:

• (i) reduces to A= A∪ (A\ C), which is always true.

• (ii) reduces to A\ C = A∩ (A\ C), which again is always true.

So let both B 6=∅ and C 6=∅. Then clearly B∪C 6=∅, but it could still happen that B∩C =∅.
Then (i) reduces to A = (A \ B) ∪ (A \ C). Clearly, x ∈ (A \ B) ∪ (A \ C) implies that x ∈ A.
Conversely, if x ∈ A, then the only way for it not to belong to (A \ B) ∪ (A \ C), would be if
it belonged to B ∩ C—which is against the hypothesis that B ∩ C = ∅. Thus we conclude that
A= (A\ B)∪ (A\ C) holds.
So let A, B and C be all different from the empty set, and furthermore let both B ∩ C and B ∪ C
be also not empty. Proceeding with the demonstration:

• (i) (→) Let x belong to A but not to B ∩ C . We have three cases:

1. x ∈ B ∧ x /∈ C , in which case x 6∈ A\ B and x ∈ A\ C ;
2. x 6∈ B ∧ x ∈ C , in which case x ∈ A\ B and x 6∈ A\ C ;
3. x 6∈ B ∧ x 6∈ C , and thus x ∈ A\ B and x ∈ A\ C .

In either way we end up with x ∈ (A \ B) ∪ (A \ C), thus concluding that A \ (B ∩ C) ⊆
(A\ B)∪ (A\ C).
(←) If x ∈ A\B, then it belongs to A\(B∩C), for if x does not belong to B, it cannot belong
to B∩C . Similarly, x ∈ A\C → x ∈ A\ (B∩C). Hence, it is obvious that if x belongs to
either A\ B or A\ C , it also belongs to A\ (B ∩ C)—i.e. A\ (B ∩ C) ⊇ (A\ B)∪ (A\ C).
Both results now imply that A\ (B ∩ C) = (A\ B)∪ (A\ C).

1See theorem 1.1.3 in the Combinatorics report.
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Chapter 1 – Basics 4

• (ii) (→) Let x ∈ A. If x 6∈ B ∪ C , then clearly x 6∈ B—meaning x ∈ A \ B—and x 6∈ C ,
which entails that x ∈ A\ C . I.e. A\ (B ∪ C) ⊆ (A\ B)∩ (A\ C).
(←) Again let x ∈ A. x 6∈ B and x 6∈ C imply that x cannot belong to B ∪ C , and hence
x ∈ A\ (B ∪ C). I.e. A\ (B ∪ C) ⊇ (A\ B)∩ (A\ C).
Both results now imply that A\ (B ∪ C) = (A\ B)∩ (A\ C).

■

The same type of proof also gives us the classical results of distributivity:
Theorem 1.6. The operations of conjunction (∩) and disjunction (∪) are distributive in rela-
tion to one another. That is to say, the following properties hold:

(i) A∩ (B ∪ C) = (A∩ B)∪ (A∩ C)

(ii) A∪ (B ∩ C) = (A∪ B)∩ (A∪ C)

Proof. • (i) (→) If x ∈ A, and x ∈ B, then x ∈ A∩B, and hence it belongs to the right hand
side. Similarly, if x ∈ A, and x ∈ C , then x ∈ A∩ C , and hence it belongs to the right
hand side. So the left hand side is contained in the right hand side. (←) If x ∈ A∩ B,
then it belongs to the left hand side. Similarly if x ∈ A∩ C . And if both x ∈ A∩ B and
x ∈ A∩C , then again x belongs to left hand side. Hence, the right hand side is contained
in the left hand side.
The two statements together imply that A∩ (B ∪ C) = (A∩ B)∪ (A∩ C).

• (ii) (→) If x ∈ A, then it clearly belongs to the right hand side. If x /∈ A, but x ∈ B ∩ C ,
then x again belongs to the right hand side. Obviously, x also belongs to the right hand
side if both conditions hold. This shows that the left hand side is contained in the right
hand side. (←) Let x be an element of the right hand side. Then either x ∈ A, or, if x /∈ A,
then it must be that x ∈ B and x ∈ C . But in both situations, x belongs to the left hand
side, showing that the right hand side is contained on the left hand side.
The two statements together imply that A∪ (B ∩ C) = (A∪ B)∩ (A∪ C).

■

Definition 1.7. Given two sets A and B, their symmetric difference, denoted A4 B, defined as
follows: A4 B

def
= (A\ B)∪ (B \ A). Equivalently, A4 B

def
= (A∪ B) \ (A∩ B).

The equivalence can be shown by proving that any element on the set A4 B according to one
definition must also be in the set according to the other definition, and vice-versa. From this
we can see that symmetric difference is commutative. Most of these equalities are proven via
the same technique, i.e. showing that any element belonging to the LHS must also belong to the
RHS, and vice-versa.

The symmetric difference of sets A and B could have also been defined as the set of all
elements x that verify the condition:

(x ∈ A∧ x 6∈ B)∨ (x 6∈ A∧ x ∈ B) (1.2)

Note this disjunction is exclusive. This way of looking at symmetric difference is useful for the
next result.
Theorem 1.8. Symmetric difference is associative.
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Chapter 1 – Basics 5

Proof. Given sets A, B and C , we want to show that A4 (B4 C) = (A4 B)4 C . From the LHS
of the equation we know that exactly one of the following holds:¨

x ∈ A∧ x /∈ (B4 C)
x /∈ A∧ x ∈ (B4 C)

The curly braces represent disjunction, although in this case, the nature of the propositions
ensures that both cannot hold simultaneously—i.e. the disjunction is exclusive. We can expand
this still further (both equations split into two):

x ∈ A∧ x /∈ B ∧ x /∈ C
x ∈ A∧ x ∈ B ∧ x ∈ C
x /∈ A∧ x ∈ B ∧ x /∈ C
x /∈ A∧ x /∈ B ∧ x ∈ C

The exclusivity property still holds (any two of those four equations cannot hold at the same
time). As ∧ distributes over ∨, we can group the first and third equations, and the second and
fourth, as follows: ¨�

(x ∈ A∧ x /∈ B)∨ (x 6∈ A∧ x ∈ B)
�∧ x /∈ C�

(x ∈ A∧ x ∈ B)∨ (x /∈ A∧ x /∈ B)
�∧ x ∈ C

But from the definition of symmetric difference, this is precisely:¨
x ∈ (A4 B)∧ x /∈ C
x /∈ (A4 B)∧ x ∈ C

This is equivalent to (A4 B)4 C , which is what was required to show. ■

Remark 1.9 (4 as a group operation). Fun fact: for a given set X , its powerset, together with
the operation of symmetric difference (SD), forms a group. Indeed the SD of two subsets of X is
bound to also be a subset of X , so we have closure. Associativity was just dealt with, and the
SD of any set with ∅ is that set itself, so ∅ is the identity. Finally, the SD of a set with itself is
precisely ∅, so each element is its own inverse. 4
Definition 1.10. Given a set A, that belong to an ambience space Ω, we define A’s complement (or
it’s negation) as:

A
def
= Ω \ A (1.3)

Remark 1.11. It is immediate from the above definition that ∅= Ω, and Ω=∅. 4
Theorem 1.12. A= A.

Proof. Let Ω be the universe. Then A
def
= Ω \ (Ω \ A). Furthermore, we can observe that for any

set A, A∪ (Ω \ A) = Ω and A∩ (Ω \ A) = ∅. So given any element of Ω it belongs to one and
only one of A or Ω \A. Hence all the elements not in Ω \A—i.e. Ω \ (Ω \A)—must be in A. This
shows that Ω \ (Ω \A) ⊆ A. For the converse direction, observe that all the elements of A do not
belong to Ω \A, and hence they belong to Ω \ (Ω \A), i.e. A⊆ Ω \ (Ω \A). Thus A= Ω \ (Ω \A),
and the theorem follows. ■

Theorem 1.13 (de Morgan’s laws). For sets B and C , the following holds:

5



Chapter 1 – Basics 6

(i) B ∩ C = B ∪ C .

(ii) B ∪ C = B ∩ C .

Proof. Follows immediately from the definition of negation (def. 1.10), and from theorem 1.5,
setting A= Ω. ■

For the next theorem, an auxiliary result is needed.

Lemma 1.14. Given sets A, B, we have A\ B = A∩ B.

Proof. Follows directly from the definitions of set difference and complementation. ■

Theorem 1.15. A4 B = A4 B.

Proof. A4 B = (A∪ B) \ (A∩ B) = A∩ B ∩ (A∪ B) = (A∪ B) \ (A∩ B) = A4 B. ■

1.1.4 Other properties
Theorem 1.16. Given sets A, B and C , if either A⊆ B and B ⊂ C , or A⊂ B and B ⊆ C , then A⊂ C .

Proof. In the first case, as B ⊂ C , there is (at least) one element in C that is not in B; and as A is
contained in B, then there is also at least one element in C that is not in A—and hence, A⊂ C .

Similarly for the second case, there an element in B that is not in A; and as B is contained
in C , there is also an element in C that is not in A—and so, A⊂ C . ■

1.2 Induction a la Odifreddi
First of all, it more than customary to have induction start from 0—and Odifreddi is no exception.
This is for convenience, of course, but we can also start the inductive process from a number
superior to 0. Odifreddi, however, while approaching induction with a different formalism from
what one usually encounters, also starts from 0: and this is also natural, for he wishes to study
computable functions, which are partial computable functions which domain happens to be (the
whole of) N. As an exercise, here we rewrite his formalism, but with an arbitrary (positive)
starting point. First a bit of notation.

(∃x ≤ y)φ(x)
def
= ∃x (x ≤ y ∧φ(x)) (1.4)

(∀x ≤ y)φ(x)
def
= ∀x (x ≤ y → φ(x)) (1.5)

Note that
(∀x ≤ y)φ(x) ≡ φ(x)∧φ(x + 1)∧ · · · ∧φ(y) (1.6)

Working the first two definitions above we get (as we would intuitively expect):

¬(∃x ≤ y)φ(x)≡ (∀x ≤ y)¬φ(x) (1.7)
¬(∀x ≤ y)φ(x)≡ (∃x ≤ y)¬φ(x) (1.8)

The case for x ≥ y is defined similarly (and similar remarks apply to negation).

6
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Definition 1.17 (Axiom of simple induction). If φ is a formula with one free variable and r ∈N

is an arbitrary natural number, then§
φ(r)∧ (∀x ≥ r)

�
φ(x)→ φ(S(x))�ª→ (∀y ≥ r)φ(y) (1.9)

where S is the successor function.

The meaning of this axiom is perhaps best conveyed if instead of the “everyday” meaning of
induction, we instead interpret a → b as meaning that we cannot have a true and b false.
Simple induction is then merely the statement that if for a given proposition φ, it holds for a
natural number r, and we can show that it cannot be true for a natural and false for its successor,
then we axiomatically believe it holds for all naturals greater or equal than r.

But what if the truth of φ(x + 1)—i.e. φ of the successor of x—depends not on the truth
of φ(x) alone, but on the truth of proposition φ for a subset of the previous values? Such a
subset could even not include x , or on the other extreme, include all values smaller than x + 1.
Consider a nonempty set S for which elements the proposition φ holds (the base cases). You
might be able show that this implies that it holds for the next value—and this might follow from
φ holding just for some of the previous values (i.e. only some of the elements of S). And for
the value after that, maybe its truth again follows from φ holding only for some of the previous
values. And similarly for next value, and so on. In all of these scenarios, when we get to value x ,
we have already established that φ holds for all previous values—even though in each step, we
might only use the fact that φ holds some subset of those previous values (and the same might
again happen trying to prove that φ(x + 1) holds).

Hence as a next step we might try to see what happens on the assumption that φ holds for
all values up to and including x . If from this it can be deduced that φ(x +1) holds, then taking
as a proposition the statement that φ holds for all values up to and including x , and applying
weak induction on that “higher level” proposition, we get the principle of strong induction. The
simplest way to state it, is to write it like this:

Theorem 1.18. The naive form of strong induction:

φ(r)∧ (∀z ≥ r)
�¦
(∀x | r ≤ x ≤ z)φ(x)

©→ φ(z + 1)
�
→ (∀y ≥ r)φ(y) (1.10)

where the quantifier in the inner implication is defined as would be expected:

(∀x | r ≤ x ≤ z)φ(x)
def
= ∀x (r ≤ x ≤ z→ φ(x)) (1.11)

Proof. It follows from simple induction, as hinted above. Let

Φ′(z) = (∀x | r ≤ x ≤ z)φ(x) (1.12)

i.e. equal to the antecedent of the inner implication.2 To prove (1.10), suppose the antecedent
of the outer implication (i.e. the inner implication) holds, for all z ≥ r. This inner implication
holds if and only if Φ′(z)→ Φ′(z + 1) also holds, also for all z ≥ r (cf. lemma 1.19).

And the fact that Φ′(z)→ Φ′(z + 1) holds, together with the fact that Φ′(r) (i.e. φ(r)) also
holds, allow us to conclude, via simple induction, that Φ′(z) holds for all z ≥ r—which can only
happen if the same is true of φ(z). ■

2Equivalently, you can think of (1.12) as Φ′(z) = φ(r)∧φ(r + 1)∧ · · · ∧φ(z).
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Chapter 1 – Basics 8

Lemma 1.19. In the proof of theorem 1.18, we have that
¦
(∀x | r ≤ x ≤ z)φ(x)

©→ φ(z + 1)
holds if and only if Φ′(z)→ Φ′(z + 1) also holds.

Proof. First, note that given two implications a→ b and c→ d, to check that one holds if and
only if the other also holds, it is easier to to check that their negations are equivalent. That is, to
check that a ∧¬b is equivalent to c ∧¬d. So we have the two implications

a) (∀x | r ≤ x ≤ z)φ(x)→ φ(z + 1) and b) Φ′(z)→ Φ′(z + 1)

Φ′(z) is equal to the antecedent of a) by definition. And if φ(z+1) is false, then clearly Φ′(z+1)
is also false. Conversely, if Φ′(z+1) is false, while Φ′(z) is true, this can only be because φ(z+1)
is false. ■

But this way of laying out strong induction requires an extraneous condition, which modern
mathematical aesthetics denounces as inelegant. So if it can be suppressed… suppress it (of
course, this new, more “elegant” form is harder to read, as it requires parsing through the implicit
parts, but well, aesthetics seldom comes without a cost…). This is why this newmore “aesthetic”
form of strong induction prompts a more lengthy discussion afterwords. The superscript asterisks
(*) mark the changes in relation to (1.10).

Theorem 1.20 (Strong induction). For any proposition φ with one free variable, the following
holds:

(∀z ≥ r)
�¦
(∀x | r ≤ x <∗ z)φ(x)

©→ φ(z)∗�→ (∀y ≥ r)φ(y) (1.13)

Proof. Let Φ(z) denote the antecedent of the inner implication of (1.13), i.e. Φ(z) = (∀x | r ≤
x < z)φ(x) (note the difference from Φ′, viz. we have here < z rather than ≤ z). Suppose the
inner implication of (1.13) holds (for all z ≥ r). This happens if and only if Φ(z)→ Φ(S(z)) also
holds (idem.). Indeed—cf. the discussion above, after (1.10)—Φ(z) is exactly the antecedent of
the inner implication of (1.13). And if φ(z), the consequent of said implication, is false, then so
is Φ(S(z)) = φ(r)∧φ(r + 1)∧ · · · ∧φ(z). Conversely, if Φ(S(z)) is false, while Φ(z) is true,
that can only mean that φ(z) is false.

Now Φ(r) is (vacuously) true, and thus, applying simple induction to Φ it follows that (∀z ≥
r)Φ(z)—which is the same as (∀y ≥ r)φ(y). ■

Skip base case check?? A cursory look at the above proof might seem to suggest that we can
skip checking the base case in certain circumstances, i.e. when it (seems to) follow vacuously—
but this is a mistaken view. When z = r, the inductive step, Φ(z) → Φ(S(z)), turns into
Φ(r) → Φ(r + 1), or equivalently, Φ(r) → φ(r). Now as Φ(r) is vacuously true, stating that
the last implication holds is the same as stating that φ(r) holds—but this has to be checked
separately; i.e. the “proof of the implication” part one usually does in inductive, er, proofs, will
never work starting from the empty set of Φ(r). Thus, we still always need to check the base
case; i.e. to check that there is a nonempty set where Φ (and thus also φ) hold. To make this
crystal clear, suppose that the base case φ(r) did not hold. Then the implication Φ(r)→ φ(r)
would be false, meaning that the antecedent in the outer implication of (1.13), with z = r,
would also be false—and so would the consequent: if φ is false for r, it cannot be true for all
values y such that y ≥ r.

8
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Hence, everything still depends on verifying the base case. The difference in relation to (1.10)
is that in (1.13), that requirement is hidden under the statement that Φ(z)→ Φ(S(z)) holds for
all z.3
Remark 1.21 (Defining the base case by convention). In [2, §1.1], the fact that all nonzero
integers can be written (possibly non-uniquely) as a product of primes is proved as follows: if
the integer is negative we can multiply by −1, and so we can work only with positive integers.
Now by convention we set that a product of zero factors is 1. So 1 is clearly a product of (zero)
primes. Now assume that all integers less than n can be written as a product of primes. If n is
prime, is is the product of one prime. If it is not prime, we’ve covered the case n= 1, so assume
n 6= 1. Then it can be written as the product of at least two numbers, each smaller than n; by
the induction hypothesis, these can be written as a product of primes—and thus so can n.

If the reader is left with the feeling that this involved a bit of cheating, I sympathise. One is
indeed left with the feeling that the induction functions because of the convention establishing
the base case. Actually however, it is the reverse: the base (n = 1) is set—by convention—to
such a value that, applying the inductive process to it, leads to the conclusion that the proposition
is also true for the next value, n= 2, which would be our “more natural” starting point anyway.
Indeed, if we start instead with n = 1, and move the next case n = 2, well 2 is either prime
(which is indeed the case), or, if 2 was not a prime, that would mean it could be written as
product of 1’s, which would in turn mean that 2 was also the result of the product of zero primes.
Which is of course absurd, but goes on to show that the inductive reasoning is nonetheless valid:
if 1 were a product of zero primes, then 2 would have also to either be prime or be the product
of zero primes. And then the same reasoning can be done for n= 3, because all numbers before
it are products of (possibly zero) primes; and so on…

So in general it seems the pattern is always the same, in these sort of contrived ex-
amples: set by convention a starting point that actually leads (via the inductive process) to the
more natural starting point—and from there onwards, it’s “induction as usual”. 4

1.2.1 The Well-Ordering Principle
The above discussion shows that weak induction implies strong induction. The converse, which
also holds, is usually shown by showing first that strong induction implies the well-ordering
principle (see below), and then that the WOP implies weak induction (idem.). Note that this
means that weak induction, strong induction, and the WOP are all equivalent, in some sense
(again, more on this below).
Definition 1.22 (well-ordering principle (WOP)). Let φ be a proposition, that is true for at least
an element x . Then there exists an element y which is the smallest element for which φ is true.
Remark 1.23. Given any set S, we can always define a function, sometimes called that set’s
characteristic function, that is true for any element that belongs to S, and false otherwise. Con-
versely, propositions that are either true or false—or more generally, functions with a binary

3For completeness, if there is more than one base case, say φ(r1) and φ(r2), then the antecedent of the outer
implication in (1.13) will contain, in particular, the following two conditions: [(∀x ∈ ∅)φ(x)] → φ(r1) and
φ(r1)→ φ(r2). In the first case the consequent clearly does not follow from the antecedent, and in the second, it
also cannot follow from the antecedent, otherwise φ(r2) would not be a base case. Hence, when we state that both
implications are true, what we are actually saying is that both φ(r1) and φ(r2) need to be checked independently
of the inductive reasoning.
Of course, it is syntactically obvious that [(∀x ∈∅)φ(x)]→ φ(r1)means that φ(r1) needs to be check separately;
but we can draw no such conclusions just from the form of φ(r1) → φ(r2). Here we must look at the concrete
scenario; for example, for the associative property (§ 1.3.3), one of the base cases is n = 3, and it is a base case
precisely because it does not follow from the previous cases, n= 1 and n= 2.

9
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output—implicitly define a set consisting of the elements for which they are true (and another
one for those for which they are false). Hence, the WOP as stated above is equivalent to saying
that every nonempty set has a smallest element. 4
We can take an informal shortcut to argue that strong induction implies weak induction. As-
suming we have a set of base case(s) already verified, and letting r be the smallest of said
cases, strong induction means that if we never observe φ(r),φ(r+1), . . . ,φ(z) being true, and
φ(z + 1) being false (for arbitrary r, z, with z ≥ r), then we believe that φ is true for all z ≥ r.
Then, making z = r, this means we will also never observe φ(z) being true and φ(z + 1) being
false (again for an arbitrary z ≥ r)—and hence we can (informally) say that this latter condition
also warrants the belief that φ is true for z ≥ r. But this is precisely weak induction!
On the meaning of saying that weak and strong induction, and WOP, are equivalent.
Before showing that strong induction leads to the WOP, which in turn leads to weak induction,
it is worth to pause for a moment and ask: what does it mean to say that weak induction implies
strong induction? Or that strong induction implies the WOP, or that the WOP implies weak
induction? Certainly any proposition that can be proved through weak induction can be also be
proven from strong induction, but the converse is clearly false, because we assume more with
strong induction. My view is that both weak and strong induction, as well as the WOP, are
equivalent in the following sense: if we choose any one of them as an axiom, we can prove the
other two forms, and thus “reach” (i.e. prove to be true) the same set of propositions. Thus, in the
axiomatic model—where you have to start from somewhere—weak induction, strong induction
and the WOP are all equivalent starting points.
From strong induction to the WOP. The intuition here is actually quite simple: suppose there
is a set of natural numbers that has no smallest element. Then it clearly cannot contain 0, as it
is the smallest element of N. But then, it cannot contain 1 either, because then it would be the
smallest element. And it also cannot contain 2, and so on… Thus, by the principle of (strong)
induction, the original set must be empty—and this is the essence of the WOP: every nonempty
set of naturals must have a smallest element.

Reasoning formally, we need only to take the contrapositive of (1.13):

(∃y ≥ r)¬φ(y)→ (∃z ≥ r) [(∀r ≤ x < z)φ(x)∧¬φ(z)] (1.14)

Now write ψ for ¬φ; as φ is an arbitrary proposition, so is ψ. Thus we get:

(∃y ≥ r)ψ(y)→ (∃z ≥ r) [(∀r ≤ x < z)¬ψ(x)∧ψ(z)] (1.15)

This says that for any proposition ψ, if it holds for some value greater or equal to r, then there
exists (in the same range) a smallest value z for which it also holds (which is not necessarily equal
to r). Now in practice, when applying induction, it is customary to set r to the smallest element
for which the proposition in question holds—the eponymous base case. But this needn’t be so:
formally, both (1.9) and (1.13)—hence also (1.14) and (1.15)—are tautologies, i.e., they are true
for an arbitrary r (and indeed, an arbitrary φ). And as we are looking at smallest elements, we
can set r = 0 and we get precisely the good old WOP: if ψ is true for some natural number y ,
then there exists a natural z which is the smallest element for which ψ is true.4 Formally, we
get the well-ordering principle:

(∃y ≥ 0)ψ(y)→ (∃z ≥ 0) [(∀0≤ x < z)¬ψ(x)∧ψ(z)] (1.16)
4Also note that from the case r = 0, follow all others: if N has a smallest element (0), then so does every subset

of N.

10
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Excursus: from weal induction to the WOP?! What would happen if we took the contrapos-
itive to weak induction? The WOP involves a sort of “broad view”—the proposition holds for
one element (the minimum) and for no other below that minimum—and so does strong induction,
particularly when starting from 0: if a proposition holds for all elements below a given one, then
it holds for that one as well. The result of taking the contrapositive of the weak induction prin-
ciple (cf. (1.9), replacing ¬φ with ψ) is coherent with this relation: you get that statement that
if a proposition holds for any element greater than r, then either it does not hold for the smallest
element (r), or there exists some other element x , greater than r, such that the proposition holds
for x , but not for its predecessor (instead of it holding for x , and for none of its predecessors, as
in the WOP). This is a weaker form of the WOP—and in both it and weak induction, the “broad
view” from above is replaced with a more “localised” one.
From the WOP to weak induction. The last remaining bit to show to come full-circle—i.e. to
show that weak induction, its strong(er) counterpart, and the WOP are equivalent, as discussed
above—is to show that the WOP implies weak induction. By way of deriving a contradiction,
suppose that the WOP is true, but that weak induction is false. That is, that there is a proposition
ξ that is true for a natural r, and that holds for n+ 1 whenever it also holds for n, but that is
not true for all naturals. Let S then be the set of elements for which ξ is false. If such a set is
not empty, then it must have a minimal element, according to the WOP. Let m be that element.
As the base case is r, we must have m> r; but as m is the smallest element for which ξ is false,
it must be true for m−1. But then, the assumed hypothesis implies that it must also be true for
m—a contradiction! Thus the set S is indeed empty, and the principle of weak induction holds.

I end this section noting that induction does not apply only to the integers. In fact, it can be
applied to other structures, as long as a special type of ordering relation—called a well-order—
can be defined. It is the fact that the integers have such an ordering relation that allows the
WOP to be meaningfully defined. This is the subject of the next section.

1.3 Binary Relations
Consider a set S; a binary relation is a subset of S × S. For a, b ∈ S, if the ordered pair (a, b)
belongs to that subset, it is denoted aRb. A relation can be seen as a generalisation of functions.
Things get interesting when we impose some structure on those subsets.

Definition 1.24. A binary relation on a set S is called an order relation if, for all a, b, c ∈ S, it
satisfies the following conditions:

1. Reflexivity: aRa;

2. Transitivity: aRb ∧ bRc⇒ aRc;

3. Anti-symmetry: aRb ∧ bRa⇒ a = b.

Note that nothing is being said about totality; this will be the topic of §1.3.1. We can, in fact,
in an order relation, have two elements a and b such that neither aRb nor bRa holds—in this
case the order is said to be a partial order. For example, the integers ordered by the divisibility
relation, |, is a partial order (as we can have two integers such that one is neither a multiple nor
a divisor of the other, and vice-versa; e.g. 2 and 5). If any one element is related to every other
element, then it is a total order.

11



Chapter 1 – Basics 12

Given a binary relation, if for two elements a and b, both aRb and bRa hold, this can be seen
inducing a notion of “equality” between those elements, in some sense. With an order relation,
that equality notion coincides with strict equality (because aRb and bRa can only happen if
a = b). Thus, we indeed get a notion of order: as only one of aRb and bRa happen, then this is
an absolute difference, i.e., if a 6= b we can say that one of them is greater than the other.

We can go to the other extreme, and make R coincide with (what we shall mean by) equi-
valence between two elements. That is, we loosen the notion of equality, so that aRb means that
(from the “point of view” of R) a is equivalent to b. Note that for this to be meaningful aRb
must imply bRa; in indeed we have:
Definition 1.25. An equivalence relation on a set S is a binary relation which is reflexive, trans-
itive and symmetric: ∀a, b ∈ S | aRb⇒ bRa.
Observe that with equivalence relations, a notion of order is impossible: indeed, as whenever
aRb happens, so does bRa, there is never an absolute difference of the kind described above.
Somewhere between these two extremes lie pre-orders, in which said absolute difference can
exist—i.e. there exist a, b such that a 6= b, and only one of aRb or bRa happen. But there can
also exist c, d with c 6= d, and where both cRd and dRc hold—meaning the binary relation is
not anti-symmetric:
Definition 1.26. An order relation which is reflexive and transitive is called a pre-order.
Very informally, pre-orders can be thought of as equivalence relations where the “equivalence
classes” are smaller, and there is a loose ordering of such “classes.” An order relation is then a
degenerate case of a pre-order, where all the “equivalence classes” contain just one element; and
an equivalence relation is a pre-order degenerated in the “other direction”, i.e. the equivalence
class of an element contains all other elements with which it is related.

To show that the hierarchy of “equivalence classes” in a pre-order is independent of
the chosen representatives. Suppose that, for a given pre-order, only aRb holds (and bRa does
not). Then given any element c such that cRa and aRc hold (i.e. it belongs to the “equivalence
class” of a), and given any element d such that dRb and bRd hold (“equivalence class” of b),
then we always have that only cRd holds (and not dRc). In words, if a is “smaller” than b, then
any element in the “equivalence class” of a is “smaller” than any element in the “equivalence
class” of b. This is consistent with the idea of an hierarchy of “equivalence classes,” as outlined
above.

Indeed, for element c, from transitivity we get that cRa∧aRb→ cRb. But bRc cannot hold,
otherwise, again from transitivity, we would get bRc ∧ cRa→ bRa, which by hypothesis does
not hold. And similarly for element d, from transitivity we get that aRb∧ bRd → aRd. But dRa
cannot hold, for then we would get bRd ∧ dRa→ bRa, which again is against the hypothesis.

Finally, applying transitivity one last time, we get cRb ∧ bRd → cRd; and the same con-
clusion also comes from cRa ∧ aRd → cRd. But dRc cannot hold, otherwise we would get (for
instance) dRc ∧ cRa→ dRa, which we shown above to be impossible. Thus c is “smaller” than
d, and as both are arbitrary elements, our hierarchy of “equivalence classes” does not depend
on the chosen representative.

Remark 1.27 (To be or not to be (strict)). Binary relations are said to be strict, or irreflexive,
if ∀x ,¬xRx . However we will usually assume that R is reflexive (unless otherwise noticed),
and denote its irreflexive counterpart by R∗. That is aR∗b is used to mean aRb ∧ a 6= b, or
equivalently, aRb is used to mean aR∗b ∨ a = b. The same distinction holds for orderings, and
henceforth we will use the notation (S,≼) to state that set S is ordered by ≼, which is not strict

12
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(i.e. it is reflexive). Its strict counterpart is a ≺ b, which means a ≼ b∧ a 6= b (or equivalently,
a ≼ b means a ≺ b ∨ a = b). I use this new notation henceforth when dealing explicitly with
orders.5 4

Note that the negation of reflexivity is not irreflexivity. Indeed, we have

¬(∀a, aRa) = ∃a | ¬aRa (1.17)

which is very different from the condition of irreflexivity, viz. ∀a,¬aRa. Similarly, the negation
of anti-symmetry is not symmetry, nor vice-versa. But if the condition for symmetry “always
fails”, in the sense that if we know that aRb holds, then we also that bRa does not, then we get
the notion of asymmetry.

Definition 1.28. A binary relation R is said to be asymmetrical if aRb→¬bRa, for all a, b.

In line with what is said above, the negation of asymmetry—∃a, b | aRb ∧ bRa—is neither
symmetry nor anti-symmetry.

Lemma 1.29. Asymmetry holds if and only if both irreflexivity and anti-symmetry hold.

Proof. (→) If R is asymmetrical it is irreflexive, because the only way the condition ∀a, aRa→
¬aRa is true, is if aRa is false for all a, which is exactly irreflexivity.

Furthermore, asymmetry also means the antecedent of the anti-symmetry condition is always
false, hence anti-symmetry holds vacuously.

(←) Rewrite anti-symmetry as a 6= b→ (¬aRb∨¬bRa). From irreflexivity we know that if
aRb, then a 6= b, and from the new form of anti-symmetry, we conclude that ¬aRb∨¬bRa must
hold. But as we have assumed aRb, then it must be the case that ¬bRa. Hence aRb→ ¬bRa,
i.e. asymmetry. ■

An irreflexive relation can be symmetric; in this case the symmetry condition for when
a = b, aRa→ aRa will always be true, because both antecedent and consequent will be false.
An irreflexive relation can also be anti-symmetric; in this case the anti-symmetry condition
for when a = b, aRa ∧ aRa→ a = a, will be trivially true, because the antecedent will always
be false. Also in this case, by lemma 1.29, such a (strict) relation will also be asymmetrical.

5For the formalism aficionado, we can redo the reasoning above in a more formal (and arguably more obscure)
way. For example to show that, starting from the definition of aR∗b (def

= aRb∧a 6= b), we get aRb ≡ aR∗b∨a = b,
we can do:

aR∗b ≡ aRb ∧ a 6= b

⇔ aR∗b ∨ a = b ≡ (aRb ∧ a 6= b)∨ a = b

⇔ aR∗b ∨ a = b ≡ (aRb ∨ a = b)∧ (a 6= b ∨ a = b)︸ ︷︷ ︸
always = 1

⇔ aR∗b ∨ a = b ≡ aRb ∨ a = b

Whenever a = b is true, aRb is also true. Hence aRb ∨ a = b has the same truth value as aRb—the only way
for the truth values to be different, would be if aRb was false and a = b was true, which is impossible (as R is
non-strict). And so we conclude that

aR∗b ∨ a = b ≡ aRb

A similar reasoning can be used to show that aRb ∧ a 6= b ≡ aR∗b (starting from the definition of aRb, viz. that
aRb

def
= aR∗b ∨ a = b).

13
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If anti-symmetry fails for all pairs, a restricted form of symmetry ensues. To see how, it is
convenient to redefine that condition of anti-symmetry, in the following manner:

(aRb ∧ bRa)⇒ a = b
≡ (¬aRb ∨¬bRa)∨ a = b
≡ (¬aRb ∨ a = b)∨¬bRa
≡ ¬(aRb ∧ a 6= b)∨¬bRa
≡ (aRb ∧ a 6= b)⇒¬bRa

Via a similar reasoning to what was done above, if anti-symmetry fails for all pairs, in the sense
that the implication (aRb∧ a 6= b)→ bRa now becomes true, this constitutes a restricted form
of symmetry, viz. symmetry minus reflexivity (whereas regular symmetry can be or reflexive).

Transitivity. We have the following lemma.

Lemma 1.30. Given a transitive relation, it is irreflexive if and only if it is asymmetrical.

Proof. (→) Set a = c in the defining condition of transitivity (cf. definition 1.24); we get aRb∧
bRa ⇒ aRa. If the relation is irreflexive, the consequent of this implication is false for all a;
hence for it to be true (because the relation is transitive), the antecedent must also always be
false. I.e. if, for instance, aRb is true, then bRa must be false. This is precisely the definition of
asymmetry.

(←) If a relation is asymmetrical, then lemma 1.29 immediately shows that it must also be
irreflexive. ■

We also have the two following results (where R denotes a reflexive relation, and R∗ its strict
counterpart).

If R∗ is transitive, then so is R. As R∗ is transitive, this means that for all a, b, c, aR∗b ∧
bR∗c → aR∗c holds. As whenever the antecedent is false, the implication is true, the only way
to falsify that condition, when moving from R∗ to R, is to set a = c, to see if we can falsify the
consequent.
Remark 1.31 (Transitivity and (ir)reflexivity). If a non-strict relation R is transitive, then R∗
needn’t also be so: consider for example the relation R consisting of aRb, bRa, aRa and bRb.
It is clearly transitive, however its strict counterpart, R∗, is not: aRb ∧ bRa → aRa, and yet
neither aRa or bRb are a part of R∗.6

However, if R∗ is transitive, so is R. For reductio, suppose R is not transitive; then there
must exist a, b and c such that aRb∧bRc∧¬aRc holds. Now as R is reflexive, ¬aRc means a 6= c.
But if a = b holds, then the previous conjunction becomes aRa ∧ aRc ∧¬aRc, which is always
false. Similarly, if we had b = c, said conjunction would instead become aRc∧cRc∧¬aRc, which
is also impossible. Hence a, b and c are all different—but this means that aR∗b∧ bR∗c∧¬aR∗c
also holds, meaning that R∗ is not transitive, which is a contradiction. 4

1.3.1 Totality and wellness
Definition 1.32. A total relation is a relation where, for all a, b ∈ S, either aRb or bRa (or both).

6This could be prevented if R was asymmetrical—but then, by lemma 1.30, R would also be irreflexive, and
hence it would coincide with R∗.
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The property of totality means that any element is related to every other element. It implies
reflexivity (the converse is of course false).

We can define the following two other properties for generic binary relations:

Definition 1.33. A relation is said to be trichotomous if exactly one of the following holds: xR∗ y ,
or yR∗x , or x = y .

When we say that a non-strict relation R is trichotomous, it is understood that the trichotomy
property applies to its strict version R∗.

Lemma 1.34. Totality and anti-symmetry hold if and only if trichotomy holds.

Proof. (→) We reason by cases (regarding totality):

1. xRy and yRx true: by anti-symmetry x = y , and (by definition of R∗) both xR∗ y and
yR∗x are false.

2. xRy true and yRx false: xRy ∨ yRx ⇔ (xR∗ y ∨ x = y) ∨ (yR∗x ∨ x = y); if yRx is
false that means x 6= y and ¬yR∗x , which yields that only xR∗ y is true.

3. xRy false and yRx true: identical to previous, concluding that only yR∗x is true.

(←) Conversely, trichotomy implies both totality and anti-symmetry:

1. If only xR∗ y is true, then xRy , so totality holds, and anti-symmetry holds because, as
xR∗ y together with trichotomy implies ¬yRb, the antecedent (of the anti-symmetry con-
dition) is false.

2. If only yR∗x is true, then the reasoning is similar.

3. If only x = y is true, then totality holds (both conditions are true), and for anti-symmetry,
both antecedent and consequent are true, so the implication is true as well.

■

Trichotomy implies irreflexivity ∀x ,¬xRx . Also, strong trichotomous relations obviously can-
not be symmetric.

After this brief foray, we delve again into order relations.

Definition 1.35. A total order is an order relation where, for all a, b ∈ S, either a ≼ b or b ≼ a
(or both).

An order relation which is not total is a partial order.

Definition 1.36 (Well-order). A total order ≺ with the additional property that for any nonempty
subset A of S there exists a ∈ S such that for all x ∈ S we have: a ≼ x is called a well-order
relation.

A set together with a well-order relation is said to be a well-ordered set. Knuth XXX defines a
well-order as a binary relation that, besides the “smallest element” property above, it is also
transitive, and trichotomic. This latter condition implies totality (which implies reflexivity) and
anti-symmetry—and so, we have all conditions of definition 1.36. For completeness, we restate
Knuth’s definition.
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Definition 1.37 (Well-order a la Knuth). A well-order is a relation ≺ that is transitive, tri-
chotomic, and such that for any subset A of S there exists a ∈ S such that for all x ∈ S we have:
a ≼ x .

Example. We can construct a well-order for the set of all integers: let x ≺ y be a binary relation
such that |x |< |y| ∨ (|x |= |y| ∧ x < 0< y). Let us show that it is indeed a well-order; we use
Knuth’s definition.

Minimal element: for any integer x , we always have 0≼ x .

Trichotomy: we want to show that exactly one of x ≺ y , y ≺ x or x = y holds. If x = y it is
clear that neither x ≺ y or y ≺ x can hold.
If x ≺ y , then from the definition for ≺ it is clear that we cannot have x = y . Now if
x ≺ y , we have two cases: a) |x | < |y|, which entails that |y| < |x | and |x | = |y| are
both false—which means y ≺ x cannot hold; b) |x | = |y| ∧ x < 0 < y , which implies
that |y|< |x | and y < 0< x are both false—again entailing that y ≺ x cannot hold.
If y ≺ x , a similar reasoning shows that neither x ≺ y nor x = y can hold. This
establishes trichotomy.

Transitivity: we want to show that if x ≺ y and y ≺ z hold, then so must x ≺ z. We must
again break this down by cases.

• If |x |< |y| and |y|< |z| hold, then so does |x |< |z| which means x ≺ z.
• If |x | < |y| and |y| = |z| ∧ y < 0 < z hold, then so does |x | < |z|, which gives us

x ≺ z.
• If |x | = |y| ∧ x < 0 < y and |y| < |z| hold, then so does |x | < |z|, which gives us

x ≺ z.
• The missing case is when |x |= |y| ∧ x < 0< y and |y|= |z| ∧ y < 0< z hold, but
this cannot happen, for y cannot be simultaneously greater and smaller than zero.

So the integers ordered by ≺ would be 0,−1, 1,−2,2,−3,3, . . . .

1.3.2 Induction, revisited
Writing condition 1.37 as an implication (the antecedent of which is another implication), and
taking the contrapositive, we get the strong induction condition. Which leads to the question of
why do we need transitivity and trichotomy, if it seems we get induction from the least element
principle alone?

I think what this means is that well-ordering and induction are fundamentally equivalent,
irrespective of the ordering one chooses to use. But the assumption (axiom) that allows us to extra-
polate that from conditions for induction (grosso modo, a0 ∧ ai → ai+1), to the conclusion that
the proposition in question holds for all elements of the domain, only makes sense if the order
relation is a well-order. This is (somewhat…) easier to see if we picture induction “mechanic-
ally”, like dominoes falling in sequence: transitivity ensures there are no cycles, and trichotomy
ensures that all elements can eventually be reached (if trichotomy was false, then there could
exist two distinct elements related to each other, but not related to any other; if neither of these
is the starting point of induction, then they would be unreachable).
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1.3.3 Associativity
Given a binary operation · that is associative, the expression a1a2 . . . an is always well-defined,
regardless of how one chooses to group the terms when evaluating it. This is shown by induction,
where the definition of associativity—a1(a2a3) = (a1a2)a3—together with the previous, trivial
cases of one and two terms, serves as the base case.

We begin with an auxiliary result. Consider a specific parenthesis disposition, defined in-
ductively as
∏n

i=1 ai =
�∏n−1

i=1 ai

�
an. Applied to five terms for example, this would give

(((ab)c)d)e; i.e. we associate left to right. Note that although associativity is only meaning-
fully defined for n ≥ 3,

∏
is well-defined also for n = 1,2. However, as stated above, the

relevant base case is n= 3, which must always be explicitly verified.

Lemma 1.38. Let m, n be positive integers. We have:�
m∏

i=1

ai

��
m+n∏

i=m+1

ai

�
=

�
m+n∏
i=1

ai

�
(1.18)

For example, ((ab)c)((de) f ) = ((((ab)c)d)e) f .
Proof. The result is trivial to verify for n= 1, 2. For n= 3 we have:�

m∏
i=1

ai

�
((am+1am+2)am+3)

=

��
m∏

i=1

ai

�
(am+1am+2)

�
am+3

=

�
m+2∏
i=1

ai

�
am+3 =

�
m+3∏
i=1

ai

�
This generalises easily; in fact, taking Eq. 1.18 as the inductive hypothesis, we obtain for n+ 1:�

m∏
i=1

ai

��
m+n+1∏
i=m+1

ai

�
=

��
m∏

i=1

ai

��
m+n∏

i=m+1

ai

��
am+n+1

=

�
m+n+1∏

i=1

ai

�
■

We can now state the general result.

Theorem 1.39 (General associativity rule). Let n be a positive integer. Regardless of paren-
thesis layout, we always have a1 . . . an =

∏n
i=1 ai, where
∏

is as defined above.

Proof. The assertion is trivial for n= 1, 2,3, and for n= 4 it is easily verifiable, but it depends on
the assertion holding for all previous values of n. This strongly suggests using strong induction.
Note that you cannot use only n = 1 or 2 as base cases here; the proof crucially depends on
the property of associativity, which as remarked above, is only defined for n ≥ 3—you have to

17



Chapter 1 – Basics 18

check all the first 3 cases; I also checked n = 4 above just for good measure. So let us take the
inductive step of saying that a1 . . . an =

∏n
i=1 ai holds, for all positive integers up to and equal to n.

For n+1, we note that for a1 . . . anan+1, regardless of parenthesis disposition, there always exists
1 ≤ k ≤ n such that a1 . . . anan+1 = (a1 . . . ak)(ak+1 . . . an+1). Again, the parenthesis layout in
both sub-groups of terms can be anything, but because both of them have n or less terms, by the
induction hypothesis we get

(a1 . . . ak)(ak+1 . . . an+1) =

�
k∏

i=1

ai

��
n+1∏

i=k+1

ai

�
and by Lemma 1.38, �

k∏
i=1

ai

��
n+1∏

i=k+1

ai

�
=

n+1∏
i=1

ai

Thus, regardless of parenthesis, a1 . . . an+1 =
∏n+1

i=1 ai always holds, which proves the theorem—
and also shows that parenthesis are unnecessary, because there is no ambiguity. ■

1.4 Functions
Let f : A→ B be a function. If there exists g : B→ A such that g ◦ f = idA, g is called the left
inverse of f . And if h : B→ A is such that f ◦ h= idB, then h is called the right inverse of f .
Theorem 1.40. (a) f is injective if and only if it has a left inverse; (b) f is surjective if and only
if it has a right inverse.
Proof. (a): (→) Assuming f is injective, to show that it has a left inverse we need only to
construct it. Let g : B→ A be defined as:

g(b) =

¨
a, if there exists a s.t. f (a) = b
a′, otherwise

where a′ is a random value of A. Because of the injectivity of f , if the first case happens, a is
unique. This directly gives that g( f (a)) = a, ∀a ∈ A—i.e. idA, which means g is the left inverse
of f .

(←) Suppose f has a left inverse g, and that we have f (x1) = f (x2). Applying g to both
sides yields: g( f (x1)) = g( f (x2))⇔ x1 = x2, which means f has is injective.

(b): (→) If f is surjective, let h : B→ A be such that h(b) = a, where a is a (possibly not
unique) value such that f (a) = b. Because f is surjective, one such value always exists (it is
unique if f is also injective). Then clearly f (h(b)) = b, i.e. idB, that is, h is the right inverse of
f .

(←) Suppose f has a right inverse h : B → A; then for any element b ∈ B, we have
f (h(b)) = b. That is, for every element of the codomain of f (i.e. B), there exists an element of
the domain of f (i.e. A), namely h(b), which is mapped by f to that codomain element. Hence
f is surjective. ■

Remark 1.41. Note that the left inverses (in case a)) and right inverses (in case b)) defined
above are not unique. 4
Theorem 1.42. A function f : A→ B is bijective if and only if there there exists g : B → A such
that g ◦ f = idA and f ◦ g = idB. Furthermore g is also a bijection, and it is unique.

18
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(a) If f is not injective, it cannot have a left inverse—
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(b) If f is not surjective, it cannot have a right
inverse—which sits on the left, when depicted.

Figure 1.1: Intuition for theorem 1.40.

Proof. (→) Construct g as follows. Because f is surjective, for any b ∈ B there exists a ∈ A such
that f (a) = b; and because it is also injective, a is the only such value. Hence g(b) = a, where
a is the unique value such that f (a) = b. The check that g ◦ f = idA and f ◦ g = idB is now
routine.

(←) If g in the given conditions exists, then it is both the left and the right inverse of f .
Theorem 1.40 then immediately implies that f is injective and surjective—and thus bijective.

For g being bijective, note that in both cases above, f is a left and right inverse of g, and
hence g is (also per theorem 1.40) injective and surjective, and thus a bijection.

Now to show that g is unique, let g ′ be another inverse of f . For all x in the domain of f ,
both g( f (x)) = x and g ′( f (x)) = x must hold. As f is bijective, when x ranges over all the
domain of f , f (x) ranges over all the domain of g and g ′. Hence, g and g ′ are equal. ■

Theorem 1.43. Given f : A→ B and g : B→ C , we have:

(i) f and g injective⇒ g ◦ f injective;

(ii) f and g surjective⇒ g ◦ f surjective;

(iii) g ◦ f injective⇒ f injective;

(iv) g ◦ f surjective⇒ g surjective.

Proof. All the cases are proved via the contrapositive:
(1): If g ◦ f is not injective, then there exist x1 and x2 such that x1 6= x2 ∧ g( f (x1)) =

g( f (x2)). But this directly implies that either f or g (or both) are not injective.
(2): If g ◦ f is not surjective, then either g is not surjective or, f is not surjective (or both).
(3): If f is not injective, then there exist x1 and x2 such that x1 6= x2 ∧ f (x1) = f (x2),

which implies g( f (x1)) = g( f (x2)), i.e. g ◦ f is not injective.
(4): If g is not surjective, then g ◦ f cannot possibly be surjective, regardless of the domain

of g, or the range of f . ■

Remark 1.44. From (1) and (2) above, we see that the composition of bijections is also bijective.
4
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2 | Groups

2.1 Groups
A set G with a binary operation that is closed, associative, and has an identity element, and
inverses for all elements, forms a group.

An example are the so-called diehedral groups, which correspond to “rigid motions” of a
regular polyhedron. To better convey what I mean by a rigid motion, imagine a jigsaw piece
that happens to be shaped as a regular polyhedron. You remove it, rotate it, flip it, whatever—
but in a way that allows you to put it back in the same place. How many motions of this kind are
there? Well, take any side of the polyhedron, and label one of its vertices A, and the other one
B. As the polyhedron has n vertices, for any rigid motion, you have n choices for where you
want to place vertex A—but once this is done, you only have two available positions for vertex
B. Hence, the diehedral group for an n side regular polyhedron, has 2n elements.

Weakened axioms. The group axioms for the existence of identity and inverses can be weakened,
while still yielding the familiar properties of a group structure. Note that I denote the inverse
of an element a as a−1, for reasons that are explained in §2.2; especially circa definition 2.12.
Theorem 2.1. Let X be a semigroup, i.e. a set with a binary associative operation, where there exists
e ∈ X such that, for all a ∈ X , ea = a holds (that is, there exists a left identity). Furthermore, for all
a ∈ X there exists a−1 ∈ X such that a−1a = e ∈ X . That is, all elements have a left inverse. Then
X is a group.
Proof. We show this by showing first that any left inverse is also a right inverse. We want to
come up with an expression where aa−1 appears, and which, through associativity, can either
evaluate to aa−1 or e—thus proving that the left inverse is also a right inverse. (a−1)−1a−1aa−1

is one such expression: ¨�
(a−1)−1a−1
�

aa−1 = aa−1

(a−1)−1
�
a−1a
�

a−1 = (a−1)−1a−1 = e

Now it is only left to show that the left identity is also a right identity. We have ae = a(a−1a) =
(aa−1)a = a, QED. ■

We could have shown a similar result assuming only right-identity and right-inverses.
Theorem 2.2. Let G be a group. Its identity element, e, is unique. The same holds for the inverse of
any given element.
Proof. Suppose there was another identity of G, say e′. Then, ee′ = e but also ee′ = e′, so e = e′.
Now let a′ and a′′ be two inverses of an element a. We have (a′′a)a′ = a′ but also a′′(aa′) = a′′,
and so a′ = a′′. ■
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Corollary 2.3. If two elements of a group have the same inverse, those two elements are equal.
Proof. Let elements a′ and a′′ have the same inverse, namely a. We have (a′′a)a′ = a′ but also
a′′(aa′) = a′′, and so a′ = a′′. ■

Theorem 2.4. (a−1)−1 = a.
Proof. (a−1)−1 = (a−1)−1e = (a−1)−1(a−1a) = ((a−1)−1a−1)a = a. ■

We can now prove results like the following (Clark [1], article 26δ):
Theorem 2.5. Let S be a semigroup with a finite number of elements. If the cancellation laws hold—
that is if ab = ac or ba = ca, then a = b—then S is a group.
Proof. Let the elements of S be s1, . . . , sn, and right-multiply them all by an arbitrary a ∈ S. We
obtain s1a, . . . , sna. These must all be distinct, otherwise we would have sia = s ja with i 6= j,
but from the right cancellation law we have si = s j, which is contradictory. So the sia are all
distinct, and as they are in the same number as the elements in the original set, there exists
an si such that sia = a, which means have a left identity element—denote it as e. The same
reasoning shows that there must exist another element s j such that s ja = e, i.e. there also exist
left inverses.1 As a is an arbitrary element, this shows that all elements in S have a left inverse.
It now follows from theorem 2.1 that S is a group. ■

Remark 2.6. The converse of theorem 2.5—that cancellation laws hold for any group—follows
from the group axioms. 4
This next result comes from the same place (Clark [1], article 29δ):
Theorem 2.7. If G is a group such that each element is its own inverse, that is, x2 = e for all elements,
then G is abelian.
Proof. We have (ab)(ba) = ab2a = a2 = e, and so, ba is the inverse of ab. As the inverse is
unique, and each element is its own inverse, ab and ba must be the same element—hence, the
group is abelian. ■

2.2 Exponent Laws
A monoid M is a generalisation of a group, where we remove the condition that every element
must have an inverse. I.e., it is a set with a binary operation that is closed, associative, and an
identity element, e, for which it holds that ea = ae = a for all a ∈ M .2

Of course, there can be invertible elements in a monoid—we just remove the requirement
that all elements need to be invertible (if this happens the monoid is actually a group). If a is
an invertible element of monoid M , that means there exists a′ such that a′a = aa′ = e. Note
that this implies the inverse is unique, cf. theorem 2.2.

In a multiplicative monoid, exponentiation to a non-negative power is defined inductively
as follows:
Definition 2.8. Let a be an element of a monoid M , and n≥ 0. Then an+1 = a · an.

1Note that s j can be equal to si , when a is the identity.
2There can be monoids in which one element has (say) two distinct left inverses (in which case said element

cannot have a right inverse—why?).
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This definition implies that a0 = e;3 also, due to associativity we have an+1 = an · a.
The usual exponent laws are valid in any monoid. For non-negative exponents, these are:

Theorem 2.9 (Exponent Laws). Let a and b be elements on a monoid M . Then the following holds:
(i) anam = an+m for all n≥ 0 and m≥ 0.
(ii) (an)m = anm for all n≥ 0 and m≥ 0.
(iii) If ab = ba, then (ab)n = an bn for all n≥ 0.

Proof. (1) Fix m, and verify that for n= 0 the property holds. Now assume it holds for an arbit-
rary n, and for n+1 we obtain an+1am = aanam = aan+m = a(n+1)+m, where the last equality is
due to definition 2.8 (as well as the commutativity and associativity of integer addition).

(2) Fix n, and verify that for m= 0 the property holds. Now assume it holds for an arbitrary
m, and for m+1 we get (an)m+1 = (an)(an)m = ananm = an(m+1), where the last equality follows
from (1).

(3) First prove that ban = an b: it holds for n = 0, and if we assume it holds for n, then
for n + 1: ban+1 = bana = an ba = anab = an+1 b. Now for (ab)n = an bn, it holds for
n= 0; assuming it holds for n, for n+ 1 comes (ab)n+1 = (ab)(ab)n = (ab)an bn = baan bn =
ban+1 bn = an+1 bbn = an+1 bn+1. ■

Remark 2.10. Should you feel some unease due to the base being when either n or m is 0, feel
free to start at 1—cf. remark 1.21. 4
Remark 2.11. In property 3 above, as ab = ba, then it must also be that (ab)n = (ba)n. This
means that an bn = bnan also holds. 4
Negative exponents. We now come to the main topic in this section, which is how we can gen-
eralise these laws to allow any integer exponent, including negative ones. Doing this however,
first requires that one defines the exponentiation operation for negative powers. To give away
the punchline:

negative exponents are only defined for invertible elements—i.e. units!

Let a be an invertible element of a monoid M , and let us represent said inverse as a−1.
Then, from the way have defined the inverse, we have that aa−1 = a−1a = a0 = e. This is in
accordance with integer exponentiation, where given a common base, we add the exponents.
This might lead us to consider an element like (a−1)n, for some non-negative n. If n = 0
we obtain e, but if n is positive, what might the inverse of such an element be? Well, it is
straightforward to verify that:

(a−1)nan = e (2.1)
and hence conclude that (an)−1 = (a−1)n. A way of defining exponentiation of negative powers
now suggests itself, especially when we take into account the desirability of maintaining that
exponent addition property:
Definition 2.12. Let the a be a unit of a monoid M , and n be a positive integer. Then a−n =
(a−1)n = (an)−1.

3If we set n = 0, then we get a0+1 = aa0 ⇔ a = aa0 ⇔ a0 = e. Note that e is the group identity, sometimes
represented by 1, yielding the perhaps more familiar form a0 = 1.
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On the other hand, if a is an invertible element with inverse a−1, then a−1 is itself invertible:

Theorem 2.13. (a−1)−1 = a holds.

Proof. (a−1)−1 = (a−1)−1e = (a−1)−1a−1a = ea = a. ■

This is again in accordance with the usual rule to multiply the exponents. And it allows us to
generalise definition 2.12:

Theorem 2.14. a−n = (a−1)n = (an)−1 holds for any integer n.

Proof. The case for n= 0 is obvious, and for n> 0 is basically definition 2.12, so let n< 0. We
have (an)−1 = (a−(−n))−1, and as −n> 0, from definition 2.12 comes (a−(−n))−1 = ([a−n]−1)−1.
Finally from theorem 2.13 we get ([a−n]−1)−1 = a−n. And (a−1)n = ([a−1]−1)−n = a−n, where
the two equalities are again due to same definition and theorem respectively. ■

Note that this means that the choice of representing the inverse of a as a−1 has paid off,
because the property of multiplying exponents holds, even when one of those exponents is −1
(and the other is any integer). This in turn allows us to generalise definition 2.8 (aan = an+1,
for non-negative n):

Lemma 2.15. For any n ∈Z, a · an = an+1.

Proof. If n is non-negative, this coincides with definition 2.8. If n is negative, then

aan

= a[a−1]−n (Definition 2.12)
= aa−1[a−1]−n−1 (Definition 2.8, as −n≥ 1)
= [a−1]−n−1 = an+1 (Theorem 2.14)

■

One useful corollary is the following:

Corollary 2.16. Given any integer l, another integer k ≥ 0, and an invertible element a of a monoid
M , we can always write al = al−kak.

Proof. al = aal−1 = a2al−2 = · · ·= al−kak. ■

Generalisation of exponent laws for arbitrary integers. Now that we have constructed a way
of making use of negative exponents, we prove the main result of this section, viz. that the usual
exponent laws, proved above for non-negative exponents, also hold for negative ones. The trick
turns out to be transforming the negative exponents into positive ones.

Theorem 2.17. Let a and b be units in a monoid M . Then:

(i) anam = an+m for all n, m ∈Z.

(ii) (an)m = anm for all n, m ∈Z.

(iii) If ab = ba, then (ab)n = an bn for all n ∈Z.
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Proof. The cases when the exponents are both non-negative have been dealt with in theorem 2.9,
so we need deal only with the scenarios where either one, or both exponents are negative.

(i) We take first the case when both m and n are negative. We have am+n = (a−1)−(m+n) by
theorem 2.14, and this latter expression is equal to (a−1)−m+(−n), where both −m and −n are
positive. And as such, we apply theorem 2.9 to get (a−1)−m(a−1)−n, from where theorem 2.14
now allows us to write aman.

Now suppose that just one of the exponents is negative; without loss of generality, let it be
n< 0. We have

aman = am(a−1)−n (thm. 2.14)
=
�
am−(−n)a−n
�
(a−1)−n (cor. 2.16, as −n> 0)

= am−(−n)e = am+n (2.2)

(ii) Again first consider the case where both m and n are negative. We have:

(am)n =
�
[(a−1)−m]−1
	−n (thm. 2.14)

=
�
[(a−1)−1]−m
	−n (idem.)

= (a−m)−n (thm. 2.13)
= amn (thm. 2.9, as both −m and −n are > 0)

Now suppose only one of the exponents is negative, say m. Via a similar reasoning, we have
[(a−1)−m]n = (a−1)−mn = [(a−1)−1]mn = amn. If it were n < 0, we would have: [(am)−n]−1 =
(a−mn)−1 = [(amn)−1]−1 = amn.

(iii) First note that as ab = ba by hypothesis, so is a−1 b−1 = b−1a−1. Now suppose n < 0,
as the other case has been taken care of in thm. 2.9. We have:4

(ab)n = [(ab)−1]−n (thm. 2.14)
= [b−1a−1]−n (as abb−1a−1 = b−1a−1ab = e)
= [a−1 b−1]−n (above observation)
= [a−1]−n[b−1]−n (thm. 2.9, as −n> 0)
= an bn (thm. 2.14)

■

On “additive” exponentiantion. The previous result can also be expressed in additive notation.
In this case, an is represented as na or an, where a is a monoid element of whatever monoid we
are considering, and n is an integer. The inverse of a—which, recall, has to exist for negative
exponents to be allowed—is denoted −a. So we restate theorem 2.17 as follows:
Theorem 2.18 (Additive exponentiation). Let a and b be units in an additively denoted monoid
M . Then:

(i) an+ am= a(n+m) for all n, m ∈Z.
(ii) (an)m= a(nm) for all n, m ∈Z.
(iii) If a+ b = b+ a, then (a+ b)n= an+ bn for all n ∈Z.
4The inversion property used in the second step—(ab)−1 = b−1a−1—is a particular case of a more general

property, viz. that (a1 · · · an)−1 = a−1
n · · · a−1

1 , provided all the ai are invertible. It is easily shown by induction.
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Remark 2.19. As remarked above, this new notational way of expressing exponentiation is
“commutative”; e.g. in item 3 above, an+ bn= na+ nb. 4
Also note that there is no problem if the elements of the monoid itself are integers; this is only
troublesome for rings (cf. 3.1).

2.3 Subgroups
Definition 2.20 (Subgroup). Let G be a group. A nonempty subset H of G is a subgroup if it also
verifies the group axioms.

Theorem 2.21 (Subgroup test). Let G be a group and H a nonempty subset of G. H is a (sub)group
if and only if a, b ∈ H ⇒ ab−1 ∈ H .

Proof. (→) If H is a (sub)group, the theorem is obvious. (←) Conversely, if a, b ∈ H ⇒ ab−1 ∈
H , then associativity in H follows from the fact that H ⊆ G. Now as H is nonempty, it contains
at least one element a. Thus a ∈ H ⇒ aa−1 ∈ H , i.e. e ∈ H , where e is the identity of
G. Furthermore, for any b ∈ H , eb−1 = b−1 must also be in H , i.e. H is closed for inverses.
Finally, given a, b ∈ H , from the previous property we know that b−1 is also in H , and thus so
is a(b−1)−1 = ab—i.e. H is closed for the group operation of G. ■

If the group is additive, the subgroup test says that it is sufficient to be closed for “subtrac-
tion.” For multiplicative groups, closeness for “division” suffices.

Consider an arbitrary group G, and any subset S of the set G. There always exists a subgroup
of G that contains S. Let H be the smallest of those subgroups (H cannot be smaller than S, so
there must exist a smallest subgroup). Then H is precisely the set of the elements of the form
s1s2 . . . sm, for any non-negative integer m (having m = 0 yields the identity) and with si ∈ S
or s−1

i ∈ S. Indeed, it is easy to check that the set { s1s2 . . . sm | si ∈ S or s−1
i ∈ S and m≥ 0 } is

a subgroup of G. Conversely, suppose there exists a subgroup H ′ that also contains S, but such
that |H ′| < |H|. Then there exists an element of the form s1s2 . . . sm, which does not belong to
H ′—but as H ′ contains S, this violates the closure property of groups, and thus H ′ cannot be a
group, which is a contradiction.

Theorem 2.22. If G is an abelian group, an m is an integer, the set Gm def
= { am | a ∈ G } is a subgroup

of G.

Proof. Gm is nonempty, as it contains at least em = e. Now, given a, b ∈ G (and thus am, bm ∈
Gm), via the subgroup test, we need to show that am(bm)−1 is also in Gm. We have am(bm)−1 =
am(b−1)m = (ab−1)m, where this last equality holds because G is abelian. As ab−1 ∈ G,
(ab−1)m ∈ Gm, and the result is proved. ■

If G used additive notation, we would express the subgroup as mG. An example of this are the
subgroups of the integers of the form mZ.5

Theorem 2.23. If G is an abelian group, the set G{m} def
= { a ∈ G | am = e } is a subgroup.

Proof. The set G{m} is nonempty: em = e. By the subgroup test, we need to show that if am = e,
and bm = e, then (ab−1)m = e. We have (ab−1)m = am(b−1)m = e(bm)−1 = e−1 = e, where the
first equality is due to G being abelian. ■

5Actually, all integer subgroups are of this form XXX.
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2.4 Cosets and Normal/Factor (Sub)groups
Given a group G, a subgroup H , and an element g ∈ G, the set gH

def
= { gh | h ∈ H } is called a

(left) coset of H , with representative g.6 The corresponding right coset would be H g, defined
as you would expect.

Given g1, g2 ∈ G, saying that g1H = g2H means that for any h ∈ H , we can always:
• find h′ ∈ H such that g1h= g2h′;
• find h′′ ∈ H such that g2h= g1h′′.

Theorem 2.24. Let G be a group, H one of its subgroups, and g1, g2 two of G’s elements. Then the
following are equivalent:

(i) g1H = g2H ;
(ii) H g−1

2 = H g−1
1 ;

(iii) g1H ⊂ g2H ;
(iv) g1 ∈ g2H ;

(v) g−1
2 g1 ∈ H .

Proof. We shall prove 1↔ 2, and then 1→ 3→ 4→ 5→ 1.
(1↔ 2) For any h ∈ H , we have from 1 that there exists h′ ∈ H such that g1h= g2h′ (and

vice-versa). Taking the inverse of both sides, we obtain:
(g1h)−1 = (g2h′)−1⇔ h−1 g−1

1 = h′−1 g−1
2 (2.3)

As one of h, h′ was arbitrary, the same holds for their inverses, which yields equation 2.
(1→ 3) Equation 3 is a direct consequence of equation 1.
(3 → 4) The identity of G, denote it e, is in H , and so it is also in g1H . This means that

g1 ⊂ g1H—and from 3, via transitivity, it must also be that g1 ⊂ g2H .
(4→ 5) For some h ∈ H , it holds that g1 = g2h⇔ h= g−1

2 g1.
(5 → 1) First let h ∈ H . We want to find h′ ∈ H such that g1h = g2h′. Rewrite this as

g−1
2 g1h= h′; as we know, from 5, that g−1

2 g1 ∈ H , from the closure of H follows that h′ is also
in H .

Conversely, given h′ ∈ H , we want to find h ∈ H such that g1h = g2h′. Rewriting this as
h = g−1

1 g2h′, and noticing that from 5, we also know that g−1
1 g2 ∈ H—due to H being closed

to inverses, and (g−1
2 g1)−1 = g−1

1 (g
−1
2 )
−1 = g−1

1 g2—and hence, h ∈ H . Thus, 1 holds. ■

Remark 2.25. As H is a subgroup, property 5 is equivalent to having g−1
1 g2 ∈ H . 4

Definition 2.26. Given a group G, a subgroup N is said to be normal in G if for all g ∈ G,
gN = N g.
Remark 2.27. Note that if G is abelian, all its subgroups are normal. 4
Theorem 2.28. If N is a normal subgroup of G, then we have gN g−1 = N , for any g ∈ G.
Proof. First, we need to show that, given any g ∈ G, any n ∈ N can be written as gn′g−1, for
some n′ ∈ N . As N is a normal subgroup, given any n ∈ N , there always exists another n′ ∈ N
such that ng = gn′—but this is the same as having n = gn′g−1. Second, we need to show
the converse, viz., that given g ∈ G, for any n ∈ N , the element gng−1 belongs to N . Via the
same reasoning, we can, given g, and for any n, write gn = n′g, for some n′ ∈ N . But then,
n′ = gng−1 is in N . Hence, gN g−1 = N holds. ■

6Note that if g ∈ H , gH is a permutation of H .
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Theorem 2.29 (Quotient group). Given a group G, with a normal subgroup N , the set of left cosets
of N , forms a group, under the operation (aN)(bN) = (ab)N . This group is called the factor group,
or quotient group.

Proof. N acts as the identity, and the inverse of aN is a−1N . The operation is associative,
because:

[(aN)(bN)](cN) = (abN)(cN) = ((ab)c)N = (a(cb))N (2.4)
= (aN)[(cb)N] = (aN)[(bN)(cN)] (2.5)

And it is well-defined, because if aN = a′N , and bN = b′N , then a′ = an1N and b′ = bn2N ,
for some n1, n2 ∈ N . So:

(a′N)(b′N) = (an1N)(bn2N) = (aN)(bN) = (ab)N (2.6)

because n1N and n2N are just permutations of N , due to the fact that n1, n2 ∈ N . ■

The previous result uses multiplicative notation, but we can illustrate the same principle
using additive notation, with the group Zn, of integer addition modulo n.7 The elements of this
group are the equivalence classes, modulo n, of the integers 0,1, . . . , n − 1. But this group is
also denoted as Z/nZ. Why? Because Z is an abelian additive group, and nZ is a normal
subgroup. Furthermore, the cosets 0+ nZ, 1+ nZ, . . . , (n− 1) + nZ correspond exactly to the
equivalence classes of 0,1, . . . , n− 1. And as we can always push extraneous n multiples into
nZ, coset addition in the quotient group corresponds to modular addition.

But note that this does NOT happen with Z∗n! Indeed, as Z is not a group under multi-
plication (only 1 and −1 have inverses), nZ cannot be a subgroup.

7See the Number Theory wiki, section “Congruences”, for more information on this group.
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3 | Rings

3.1 Rings
A ring is an algebraic structure (A,+, ·) such that (A,+) is an abelian group, and · is associative
and distributes over addition. If A contains an identity for the operation ·, it is called a ring with
unity. ⋖ tabSbS
Notations for +, ·, 0 and 1. Carrying over the similarity with the primordial ring, that of
the integers Z, we denote + as addition and · as multiplication—although for a particular ring
those operations could actually be something completely different. Moreover, for the same
reason, the additive identity (which must always exist) is denoted by 0, and the (optional)
multiplicative one, if it exists, is denoted by 1. (This is a significant departure from the case
of groups, where the identity was usually denoted by e.) The additive inverse of an element a,
is denoted −a. Obviously, these operations and elements might have nothing to do with their
integer counterparts, but it significantly eases the notational burden.

The multiplicative identity, if it exists, is called an unity. Elements for which there exists a
multiplicative inverse, if any, are called units.
Two types of multiplication. Speaking of notational burden, multiplication between elements
of a ring, say between a and b, is often denoted by simply juxtaposing them, ab. This can cause
confusion when want to represent the repeated addition of a, say, n times, which is sometimes
done as na. To distinguish these two very different operations, the latter one, repeated addition
of a, n times, will be represented as n · a (or a ·n). For example, we will write a+ a+ a as 3 · a,
or a · 3. From this way of defining things, stems the next result.

Theorem 3.1. Let a, b be elements of a ring R, and s, t ∈Z. We have: (a · s)(b · t) = (st) · (ab) =
(ab) · (st).

Proof.

(a · s)(b · t) =
�

s∑
i=1

a

��
t∑

j=1

b

�
(3.1)

=
∑

1≤i≤s
1≤ j≤t

ab = (st) · (ab) = (ab) · (st) (3.2)

■

Theorem 3.2. For any ring, any element a multiplied by the additive identity (i.e. zero) equals that
same identity.
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Proof. We have 0a = (0+0)a = 0a+0a. Adding to both sides the additive inverse of 0a, gives
0= 0a. For a0 the reasoning is analogous. ■

Theorem 3.3. Given elements a, b of a ring R, we have: (−a)b = a(−b) = −ab.
Proof. We have (−a)b = (−a)b + ab − ab = (−a + a)b − ab = 0b − ab = −ab. For a(−b)
the proof is similar. ■

Corollary 3.4. Given elements a, b of a ring R, we have: (−a)(−b) = ab.
Proof. (−a)(−b) + a(−b) = (−a + a)(−b) = 0b = 0, so a(−b) is the additive inverse of
(−a)(−b). But by the previous theorem (3.3), a(−b) = −ab, and −ab is the additive sym-
metric of ab. Hence (−a)(−b) and ab have the same additive inverse, and so we must have
(−a)(−b) = ab (cf. corollary 2.3). ■

Corollary 3.5. In a ring, the following holds: a(b− c) = ab− ac and (b− c)a = ba− bc.
Proof. a(b−c) = a(b+(−c)) = ab+a(−c), which by theorem 3.3 equals ab−ac. For (b−c)a
the reasoning is similar. ■

Theorem 3.6. For any ring with unity, the following hold:
(i) (−1)a = −a.

(ii) (−1)(−1) = 1.
Proof. Note that −1 refers to the additive inverse of the multiplicative identity. For 1), a +
(−1)a = 1a + (−1)a = (1+ (−1))a = 0a = 0, and hence (−1)a is the additive symmetric of
a, which we denote as −a.

For 2), set a = −1 in 1), and recall that −(−a) = a.1 Another way would be to set a = b =
−1 in corollary 3.4. ■

3.2 Subrings
Unlike what happens with groups, subrings are not really that important—the more important
notion turns out to be that of an ideal. But they are needed, and they are defined in the obvious
way: given a ring R, a subset S of R is a subring if the axioms of rings also hold true for it.
Of course, whatever axioms we use for ring (e.g. with or without unity) must also be used for the
subring(s)!

The following result applies to any ring, with or without unity.
Theorem 3.7. Let (R,+, ·) be a ring. A nonempty subset S of R is a subring if it is closed for · and
− (additive symmetric).2

Proof. (→) If S is a subring, then it closed for ·, and as it is also an additive (sub)group, it is
also closed for − (cf. the subgroup test). (←) Conversely, the requirement that S be closed for
− implies, also via the subgroup test, that S will be an additive abelian (sub)group. Thus S
is closed for +, and this, together with the assumption that it is closed for ·, shows that the

1Cf. theorem 2.13, which in additive notation is written precisely as −(−a) = a.
2The reason why we cannot just require instead that S be closed for + and · is that this is not sufficient to

guarantee that S be an (additive) abelian group. Case in point: Z+ is closed for addition and multiplication, but is
not an abelian group (it does not contain additive inverses).
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distributivity laws hold for S (as it is a subset of R).3 Associativity of · holds for the same reason.
Hence S is a (sub)ring. ■

This is a very general definition, in particular because it doesn’t require that R be a ring
with unity (multiplicative identity). We could adapt the result for rings with unity, but that is
a somewhat perilous course, because it is possible for a ring with unity, to have a subring also
with unity—albeit a different unity:
Example 3.8. Consider the ring of integers modulo 6, Z6, and its subring {0,2, 4}. The unity
of Z6 is 1, but the unity of the subring is 4! ◊

3.3 Integral Domains
A specialisation of a ring, that sits between rings and fields, are integral domains.
Definition 3.9. A commutative ring R with unity is an integral domain if it does not have any
zero divisors; i.e. if given any nonzero element a ∈ R, there is no nonzero element b ∈ R such that
ab = 0.
For integral domains as defined above, the cancellation law holds: if a 6= 0, then ab = ac →
b = c. However we could have also defined integral domains as rings for which the cancellation
law holds, as for such rings, there can be no zero divisors—so the two definitions are equivalent.
This is shown in the next two results (hereinafter, when referring to integral domains, that means
definition 3.9: rings without zero divisors).
Theorem 3.10 (Cancellation law). Let a, b, c be elements of a ring without zero divisors (i.e., an
integral domain), with a 6= 0. Then if ab = ac, then b = c.
Proof. ab = ac ⇔ a(b − c) = 0, and a 6= 0, so due to nonexistence of zero divisors, we must
have b− c = 0, or equivalently, b = c. ■
Theorem 3.11. Any ring for which the cancellation law holds, has no zero divisors—i.e., it is an
integral domain.
Proof. I will show the contrapositive, viz. that if a ring contains zero divisors, the cancellation
law does not hold. Indeed, let a, b be two nonzero elements of a given ring, such that ab = 0.
Then ab = a0, but b 6= 0—i.e., the cancellation law does not hold. ■

Remark 3.12. Theorem 3.11 could also have shown like this (still using the contrapositive):
suppose that in one ring where cancellation holds, we have nonzero elements a, b, such that
ab = 0 (i.e. we have zero divisors). Take any element c, and write b as (b + c)− c. If we set
d = b+ c, we obtain b = d− c, and thus we can now rewrite the first condition as a(d− c) = 0,
which is equivalent to ad = ac—and via cancellation, this would imply that d = c, which is
false, as b 6= 0 (and thus d 6= c). Hence cancellation law does not hold. 4

A field is a ring which is also an abelian group for multiplication—i.e. where multiplication
is commutative, and all elements except 0 have a multiplicative inverse. Obviously, all fields
are rings—indeed, all fields are integral domains—they just have additional structure. We have
the following result:

3In more detail, let a, b and c be elements of S. Then a(b+ c) is in S due to additive and multiplicative closure.
And ab + ac is also in S, due to multiplicative and additive closure. Similar reasoning applies to (b + c)a and
ba+ ca. As the binary operation of S coincides with that of R, which must be well-defined—and as left and right
distributivity hold in R—we conclude that the distributivity laws hold in S.
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Theorem 3.13. Any finite integral domain is a field.

Proof. Take a nonzero element a. We must show that a has a multiplicative inverse. If a = 1 we
are done, so assume a 6= 1. As the integral domain is finite, if we take the sequence of powers of
a, a2, a3, . . . , eventually we will hit repeated elements. Hence, there must exist positive integers
i, j, with i > j such that ai = a j. Cancelling, we obtain:

ai = a j ⇔ ai− ja j = 1a j ⇔ ai− j = 1 (3.3)

If i− j = 1, that would mean that a = 1, which is not the case—so it must be that i− j > 1⇔
i − j − 1> 0. And so 1= ai− j = ai− j−1a, meaning that ai− j−1 is the inverse of a. ■

3.4 Characteristic of a Ring
Definition 3.14. Let R be a ring with unity. Its characteristic n is the least positive integer n such
that n · 1= 0.4 If no such integer exists, then the characteristic is 0.

If a ring has characteristic n, then adding n times any of its nonzero elements, also yields 0:
indeed let x 6= 1 be one such nonzero element. We have:

n · x = n · 1x = (1x + 1x + · · ·+ 1x︸ ︷︷ ︸
n times

) = (1+ 1+ · · ·+ 1︸ ︷︷ ︸
n times

)x = (n · 1)x = 0x = 0 (3.4)

For this reason, the characteristic for a ring without unity is defined as the smallest number
of times we need to add any one of its elements to itself, in order to obtain 0.

Theorem 3.15. The characteristic of an integral domain, is either 0 or a prime.

Proof. We need to show that if the characteristic of an integral domain is positive, then it is
prime. So let n= st be the positive characteristic of an integral domain (with s, t, and of course
n, positive integers). We have 0 = n · 1 = st · 1 = (s · 1)(t · 1), were the last equality is due to
property 3.1. As we are dealing with an integral domain, one of (s ·1) or (t ·1) must be 0—but
n is by hypothesis, the least positive integer such that n · 1 = 0. Hence one of s or t must be
equal to n, and the other is equal to 1 (the integer, not the unit of the integral domain). This
entails the primality of n. ■

4Beware: both the 0 and the 1 here refer to the additive and multiplicative identities, respectively! But in the
next sentence, having characteristic 0, this 0 is an integer! Cf. the remarks at the beginning of the chapter about
the two types of multiplications we have in rings (§3).
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The whole point of algebra, originally at least, was to solve equations…

4.1 Quadratic Equations
So we have an equation (in the reals) of the form ax2 + bx + c = 0, and we want to solve it.
Usually this requires factorising the expression. But how?

We could start by noting that (x+d)2 = x2+2xd+d2. Since we want to obtain bx instead
of 2d x , we might set b = 2d, i.e. d = b/2:

(x + b/2)2 = x2 + bx + b2/4 (4.1)
This is closer to the goal, but what we want next is to have c instead of b2/4:

x2 + bx + c = 0⇔ x2 + bx + b2/4+ (c − b2/4) = 0 (4.2)

⇔ (x + b/2)2 =
b2 − 4c

4
⇔ x = − b

2
±
p

b2 − 4c
2

(4.3)
This is already pretty close. But suppose that in (4.1), we replace b/2 with b/(2a). We obtain�

x +
b

2a

�2
= x2 +

b
a

x +
b2

4a2
(4.4)

which, if we multiply by a, yields:

a
�

x +
b

2a

�2
= ax2 + bx +

b2

4a
(4.5)

Our problem is now solved:

ax2 + bx + c = 0⇔ ax2 + bx +
b2

4a
+
�

c − b2

4a

�
= 0 (4.6)

⇔ a
�

x +
b

2a

�2
=

b2 − 4ac
4a

⇔
�

x +
b

2a

�2
=

b2 − 4ac
4a2

(4.7)

⇔ x = − b
2a
±
√√ b2 − 4ac

4a2
= − b

2a
±
p

b2 − 4ac
2|a| (4.8)

So if a > 0 (if a = 0 this is a degree 1 equation, and formula is inapplicable) we obtain:

⇔ x = − b
2a
±
p

b2 − 4ac
2a

= − b±pb2 − 4ac
2a

(4.9)
If a < 0, then:

⇔ x = − b
2a
±
p

b2 − 4ac
2(−a)

= − b∓pb2 − 4ac
2a

(4.10)
But this means x takes exactly the same values as with formula (4.9)—which we take as the
formula for the roots of second degree equations.
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