
The Algebra Of Two’s Complements
Binary Number Representation

Óscar Pereira*

Abstract. Themathematical rationale for two’s complements is provided.
Prerequisites. The reader is assumed familiarised with converting un-
signed (positive) integers to their binary representation, and vice-versa.
Keywords: binary representation, two’s complements, modular arith-
metic.

1 Introduction: Rules Of Two’s Complements
First, notational conventions: given an n-bit number, we refer to any spe-
cific bit by referring to its corresponding power of two, when interpreting
it as an unsigned integer and translating it to decimal. So for example, in
the 4 binary number 10002, the only bit set to 1 is the 23 bit. Additionally,
as this examples illustrates, we assume that the most significant bit is the
leftmost one, and the least significant bit is the rightmost one. Hence,
moving leftwards increases the “significancy” of bits, and moving right-
wards decreases it. Lastly, given a binary string, its conversion to decimal
as if it were an unsigned number will be referred to as the “standard way”
or the “usual way.”

The rules of two’s complements are the following: using n-bit strings,
instead of representing integers from 0 up to and including 2n − 1, we
reserve the most significant bit to indicate the sign (positive or negative) of
the integer, and use the remaining bits to represent numbers from −2n−1

up to and including 2n−1 − 1. In particular, negative numbers have the
most significant bit set to 1, while 0 and the positive numbers have that
bit set to 0—which is also why we can represent one less positive number
than the number of negative numbers. In other words, we get half (2n−1)
of the full space (2n) for negative numbers, and half for zero plus the
positive numbers. Throughout the rest of this section, we tacitly assume
that the number of bits n is big enough to represent whatever integer we

*CONTACT: {https://, oscar@}randomwalk.eu. DATE: May 14, 2024.
Updated versions of this document and other related information can be found at https://randomwa
lk.eu/scholarship/twos-complements/.

https://randomwalk.eu/scholarship/twos-complements/
https://randomwalk.eu/scholarship/twos-complements/


§1 – Introduction: Rules Of Two’s Complements 2

wish to represent as two’s complements (the question of how big is big
enough is dealt with in §5).

So given a positive integer a that can be represented with n-bit two’s
complements, we just represent it the usual (unsigned) way. For example,
with n = 3, 1 is presented as 0012 and 3 as 0112. Note that the most
significant bit will always be set to 0. If now a is a negative integer,
compute 2n − (−a), and then represent it as usual. For example, again
with 3 bits, to represent−1, we compute 23−1 = 7, and then represent it
the usual way: 1112. To take another example, −4, we have 23 − 4 = 4,
the standard representation of which is 1002.

Conversely, given an n-bit string that represents an integer in two’s
complements, we convert it do decimal as usual, except that the power
2n−1 is replaced with −2n−1 (note the minus sign). It is immediate the
observation that this has no effect on non-negative numbers, for which the
2n−1 bit is always zero. As for negative numbers, take the same examples
as above: 1112 = 1 × (−22) + 1 × 21 + 1 × 20 = −110 and 1002 =
1× (−22) + 0× 21 + 0× 20 = −410.

Given the two’s complements binary representation of a number, we
can obtain the representation of its additive inverse in the same scheme,
by flipping all the bits, and then adding 1 (binary addition). For example
with n = 3, we have 210 = 0102, and flipping all the bits yields 101,
and adding 1 yields 1102 = −210 (table 1). Note that with 010, in the
result of the addition the 23 bit will be set to 1—and it must be discarded:
010 = 0002, and flipping all bits yields 111, and adding 1, yields 1000
(table 2).

0 0 1 (carry)
1 0 1

+ 0 0 1

0 1 1 0 (−210)

Table 1: In two’s complements with 3

bits, the bit of power 22 corresponds to
−22.

1 0 0 (carry)
1 1 1

+ 0 0 1

1 0 0 0 (0002 = 010)

Table 2: In two’s complements with 3 bits,
when the bit of power 23 is 1, we discard it.

A more expedite way to obtain the same result is the following: start-
ing with the least significant bit (leftmost), keep everything equal up to
and including the first 1; and then flip all other bits to the right. It is a
simple exercise to see that this is equivalent to flipping all bits and then
adding one, discarding the 2n bit, if it is set.
WARNING. This procedure does not work for the smallest negative number
representable with n bits (i.e., −2n−1)—instead of yielding its additive
inverse, it yields itself! This is because the additive inverse, 2n−1 cannot
be represented with n bits: the largest positive integer representable is



§2 – Modular Arithmetic 3

2n−1 − 1. Taking the 3 bit case again, −410 = 1002, flipping everything
produces 011, and adding 1 yields again 1002 = −410.

To add numbers represented in two’s complements with n bits, just
add them as normal, discarding the 2n bit if it is 1 (just as done in table
2): the result will be within the representable range for the n bits, as long
as the two leftmost carry bits are equal. Some examples are provided below,
and §4 looks specifically at overflow situations. (Keep in mind that when
adding n bit parcels, we always have n carry bits.)
Remark 1.1 (“Two’s complements” is a misnomer). In reality, the sys-
tem we have described computes—for the negative numbers—the com-
plements of 2n, rather than of 2, as the name implies. But “two’s comple-
ments” is the standard name, and so we shall stick to it. △

This covers the basics of how two’s complements arithmetic functions.
The rest of the text explains why it functions. The task requires modular
arithmetic—the fundamentals of which are reviewed in §2. Its application
to two’s complements is done in §3, and in §4 we cover how to detect
overflows. Finally, in §5 we cover extending two’s complements from n

to n+1 bits, and how to compute the number of bits needed to represent
a given number (positive or negative) in two’s complements binary form.

We will rely heavily on examples of two’s complementation with 3

bits (i.e., n = 3).

2 Modular Arithmetic
Feel free to skip this section if you are already comfortable with modu-
lar arithmetic: it is just a review of fundamental notions, needed in the
sequel.

to be done... XXX. In the meantime, a good reference is Shoup [1],
especially chapters 1 and 2.

3 Modular Arithmetic In Binary
Consider the binary numbers from 0002 to 1112 in the standard repre-
sentation—i.e., the integers from 0 to 7. If, to the customary way of adding
them, one adds the rule that whenever the 23 bit is set to 1, we discard it,
then we obtain addition modulo 8: for from 10002 = 810 comes 0002 =
010, from 10012 = 910 comes 0012 = 110, and so on. That is to say,
we have addition modulo 8 of the elements in the set {0, . . . , 7}. Put
differently, we have addition in Z8, but where each equivalence class is
represented by one (and only one) of the integers in the set {0, . . . , 7}.



§3 – Modular Arithmetic In Binary 4

Definition 3.1. We denote the set {0, . . . , 7}—sometimes called the canon-
ical representatives of the equivalence classes of Z8—by Z+

8 .
The representation in two’s complements leverages the fact that in Z8

arithmetic, each equivalence class has an additive inverse. In fact, given
x ∈ Z+

8 , the additive inverse of [x] is [8 − x]. So the additive inverse
of [1] is [7], of [2] is [6] and of [3] is [5]—and vice-versa, as modular
addition, similarly to “normal” addition, is commutative. The inverse of
[0] is [8], or equivalently, [0], and that of [4] is also the same element,
viz. [4]. When we take the usual binary representation of the elements in
Z+

8 , complement their bits and (binary) add 1 (cf. §1), what we are, in
effect, doing, is going from x to 8 − x (because complementing the bits
gives us 7− x). When we discard the 23 bit if it is 1, we doing a modular
reduction—which in this case, amounts to subtracting 8—that is, we are
ensuring the resulting integer belongs to Z+

8 .
The idea of two’s complements, is to use the most significant bit—22

in our case—to store the sign of the integer. Now we naturally want our
two’s complements representations of non-negative numbers to coincide
with their unsigned representations, which means we want the represen-
tation of non-negative numbers to have the 22 bit set to 0. And thus,
negative numbers must have that bit set to 1. In Z+

8 , the numbers that
have that bit set to 1 are 4, 5, 6, 7—and thus, this means we want the
equivalence classes [4], [5], [6] and [7] to represent negative numbers—so
we want a negative representative for each. Moreover, just as Z+

8 consists
of sequential integers, we want the new set consisting of the new represen-
tatives of these classes, plus the same representatives of the other classes,
to also consist of sequential integers. Otherwise we could end up with
a system where we might be able to, say, represent −3 and −1, but not
−2… The easiest way to do this, is to subtract 8: i.e., in the elements of
Z+

8 , 4 is replaced by −4, 5 by −3, 6 by −2 and 7 by −1, all the other el-
ements remaining equal. Observe that we are still dealing with the same
equivalence classes, because we have 4 ≡ −4, 5 ≡ −3, 6 ≡ −2 and
7 ≡ −1, all modulo 8. We just represent some of them with different
elements, which gives us a new set:
Definition 3.2. We denote the set {−4, . . . , 0, . . . , 3} by Z−

8 .
Note that we are still dealing with the same binary representations—

0002 to 1112—as well with the same way of adding them—i.e., addition
as usual followed by discarding the 23 bit if it is 1. And if, when we as-
sign them to the integers of Z+

8 the usual way, the operation we have is
addition in Z8, then when we assign them to the integers in Z−

8 as just
described, the operation is still addition in Z8—because the changed in-
tegers were replaced with other integers in the same equivalence class. In



§3 – Modular Arithmetic In Binary 5

other words, we are still doing addition in Z8, but now using as represen-
tatives the integers in Z−

8 .
Remark 3.3. While it is correct to say that addition using two’s com-
plements with 3 bits computes addition in Z8, one cannot say that it
computes addition modulo 8. Because, for example, 3+ 2 is 5 modulo 8,
but with two’s complements the result of 3 + 2 is −3—in fact, this is an
example of an overflow, of which much more in §4. △

We can now also understand why with n bits, in two’s complement
the 2n−1 bit is actually “worth” −2n−1 (cf. §1), rather than 2n−1, as in
the standard representation: with 3 bits, when the most significant bit
(2n−1 = 22) is 1, subtracting 8 (i.e., subtracting 2n = 23) effectively
means that when converting to decimal, that bit is now multiplied by
−22, because 22 − 23 = −22 (or more generically, 2n−1 − 2n = −2n−1).
Remark 3.4 (Smallest negative.). It should now be clear why applying
the rule to obtain the additive inverse by complementing and then adding
1, fails for the smallest negative number (−4 with 3 bits, −2n−1 with
n bits), and instead yields the same number (cf. the warning given in
§1): −2n−1 in n-bit two’s complements is represented by the same binary
string that represents 2n−1 in the standard representation. And as we
have seen, complementing and adding one computes 2n − 2n−1 = 2n−1,
the unsigned representation of which, in two’s complements, corresponds
again to −2n−1… △

Just as Z8 addition “wraps around” in Z+
8 —for instance, 7+1 = 8 ≡

0 (mod 8)—so too we have 3+ 1 = 4 ≡ −4 and −3+ (−2) = −5 ≡ 3,
all congruences modulo 8. That is, Z8 addition also wraps around in
Z−

8 . For completeness, the “bit version” (in two’s complements) of those
additions is provided in tables 3 and 4.

0 1 1 (carry)
0 1 1 (3)

+ 0 0 1 (1)
0 1 0 0 (4 ≡ −4)

Table 3: Recall that in two’s comple-
ments with 3 bits, the bit of power 22
corresponds to −22.

1 0 0 (carry)
1 0 1 (−3)

+ 1 1 0 (−2)
1 0 1 1 (−5 ≡ 3)

Table 4: Recall that in two’s complements
with 3 bits, when the bit of power 23 is 1,
we discard it.

There will be much more to say on wrapping around on §4, but before
that, note the following: for a given binary sum, whether or not wrapping
around happens depends on the representatives used! So for example,
in Z−

8 , (−3) + (−1) = −4, without any wrapping around. However,
if we “translate” the same binary addition into the elements of Z+

8 , we
have 5 + 7 = 12 ≡ 4 (mod 8)—where we’ve had to wrap around (i.e.,
modularly reduce) the result, in order to get an element of Z+

8 .



§4 – To Wrap Or Not To Wrap (Around) 6

4 To Wrap Or Not To Wrap (Around)
Our goal with the representation of numbers in two’s complements, is not
modular addition, but rather addition in Z. Which coincides with ad-
dition in Z8 only when there is no wrap around! In particular, the
examples of remark 3.3, and of the tables 3 and 4—all of which involve
wrapping around Z−

8 —are wrong in Z, because 5 ̸= −3, −4 ̸= 4 and
−5 ̸= 3. When such wrapping around has occurred, we say we have an
overflow. We want to be able to detect, after having performed binary
addition, whether or not an overflow has occurred. Which is straightfor-
ward with the elements of Z+

8 and the standard representation, but not so
much with those of Z−

8 (represented in two’s complements)—let us now
see why.

Beginning with the easy case, in Z+
8 we have an overflow if and only

if the result after addition has the 23 bit set to 1. Otherwise the resulting
integer can be represented with only 3 bits, and hence, no overflow.

The case of Z−
8 is much thornier, and reason can be seen in table 3:

we have an overflow with the 23 bit of the result set to 0. Conversely,
consider the addition of −1 plus −2, depicted in table 5.

1 1 0 (carry)
1 1 1 (−1)

+ 1 1 0 (−2)
1 1 0 1 (13 ≡ −3)

Table 5: Recall that in two’s complements with 3 bits, the bit of power 22 corresponds
to −22, and also that when the bit of power 23 is 1, we discard it.

Here we do not have an overflow, even though the result after addition
contains the 23 bit set! The solution out of this conundrum, is to take each
possible case separately:
• Addition of a negative integer with a non-negative integer. Here over-
flow is not possible, because the result will always be equal to or greater
equal than −4, and smaller than or equal to 3—which can both be rep-
resented in two’s complements using 3 bits, meaning that so can every
other possible result.

• Addition of two non-negative integers. Here overflow occurs when the
result is greater than or equal to 4, which by wrapping around means it
is in the set {−4,−3,−2}. It cannot go “further” than −2 because that
is the result (in Z−

8 ) of adding to itself the greatest possible positive
number, viz. 3 + 3. This leads to the key observation: the 22 bit in
both parcels is 0, but in the result it will be 1. In other words, overflow



§4 – To Wrap Or Not To Wrap (Around) 7

happens if and only if the 22 bit goes from 0 in the parcels, to 1 in the
result.

• Addition of two negative integers. Here overflow happens when the
result is smaller than or equal to −5. Now, again by wrapping around,
this means the result will belong to the set {3, 2, 1, 0}—it cannot go
“further” than 0 because that is the result (in Z−

8 ) of adding the smallest
possible numbers, i.e. (−4) + (−4). And analogously to above, we see
that overflow happens if and only if the 22 bit goes from 1 in the parcels,
to 0 in the result. (Note that when adding two negatives, the 23 bit of
the result will always be 1, whether there is or isn’t an overflow.)

So we know how to detect when overflow occurs—but there is another
way to do that, which is more “implementation friendly.” Which is the
following: overflow occurs if and only if out the 3 carry bits, the two
leftmost are different. First, we show that when adding two integers of
different signs (or one integer and zero)—where overflow cannot occur—
the two leftmost carry bits are always equal. In this scenario, we have a
sum like the one shown in table 6 (the x are arbitrary values).

z y 0 (carry)
1 x x

+ 0 x x

Table 6: We omit the result line because it is unneeded for our analysis.

It should be straightforward to see that if y = 0, then it will also be
that z = 0. And if y = 1, then in that column we will have the sum
1+ 1+ 0, the result of which is 0, with a carry of 1—i.e., z = 1. In either
case, the two leftmost carry bits are equal.

Now, in the case of addition of two positive numbers the leftmost carry
bit is always 0, and for the addition if two negative numbers, it is always
1. Thus we have sketch sums like in tables 7. In both cases it is immediate
to see that the 22 bit of the result differs from that of the parcels if and
only if the two leftmost carry bits are different.

0 y x (carry)
0 x x

+ 0 x x

0 y x x

1 y x (carry)
1 x x

+ 1 x x

1 y x x

Table 7: Left: addition of two positives. Right: addition of two negatives.

It is a straightforward (albeit cumbersome) exercise to show that all of
the analysis above carries over—mutatis mutandis—to two’s complements



§5 – Bounds & Padding 8

addition with any arbitrary number n of bits. In particular, it is still the
case that overflow occurs if and only if the two leftmost carry bits are
different. One of things that changes, is the interval of numbers that can
be represented with n bits—which is the topic of §5.

5 Bounds & Padding
Extending n. Before dealing with bounds proper, one might wonder
how, when the number of bits is increased, will the two’s complements
representation of integers that could already be represented vary. For in-
stance, take again n = 3. How does the representation of integers that
can be represented in 3-bit two’s complement changes, when going to 4

bits? The case for non-negative integers should be easy to crack: they
just get an extra 0 padded to the left. For instance, 001 becomes 0001,
and 011 becomes 0011. As for negative numbers, they also get padded to
the left, but with 1’s! To see that this is so, observe that the n-bit two’s
complement representation of a negative integer a, is the standard rep-
resentation of the positive integer 2n − a. And with n + 1 bits, that
same negative integer is represented by the positive integer 2n+1−a. But(
2n+1 − a

)
− (2n − a) = 2n—and as 2n − a is at most 2n − 1, it can be

represented using n bits. Thus, if when going from n to n + 1 bits we
add 2n, that means (p)adding an extra 1 to the left of those n bits (the
binary representation of a). For example, −2 with 3 bits is represented
by the standard representation of the integer 23 − 2 = 610 = 1102. And
with 4 bits we add 23: 23 − 2 + 23 = 24 − 2 = 1410 = 11102 which can
readily be checked to correspond to −2 in two’s complement with 4 bits:
1× (−23) + 1× 22 + 1× 21 + 0× 20 = −2.
Bounds. With 3 bits we can represent integers from −4 up to and includ-
ing 3. Withn bits, we can go from−2n−1 up to and including 2n−1−1. An
interesting question is the reverse one: given an integer, what is the mini-
mum number of bits that are needed to represent it? For positive integers
in the unsigned world, the smallest integer that requires at least n bits to
represent, is the one where the most significant bit is 1, and all other bits
are 0—i.e., 2n−1. And the largest integer that can be represented without
adding more bits, is the one where all the bits are 1, i.e., 2n − 1. In other
words, the integers that require at least n bits to represent, are those ver-
ifying the condition 2n−1 ≤ x < 2n—which resolves to n = ⌊log2 x⌋+1.
This last step makes sense because given any positive integer x, we can
always find another positive integer n such that the double inequality is
verified. Similar assumptions will also hold for similar reasonings to be
done in the next two paragraphs.

With two’s complements, the most significant bit is reserved for the



References 9

sign, and hence the positive numbers that require at least n bits to repre-
sent are the ones verifying 2n−2 ≤ x < 2n−1, with n ≥ 2 (with 1 bit no
positive integers can be represented, only 0 and −1; with 2 bits, the only
representable positive integer is 1). This resolves to n = ⌊log2 x⌋ + 2.
I.e., to represent a positive integer x in two’s complements requires at
least ⌊log2 x⌋+ 2 bits.

Lastly, negative integers. In two’s complements with n bits, all rep-
resentable negatives are of the form −2n−1 +

∑0
i=n−2 bi · 2i, with n ≥ 1

and where the bi are the individual bits. Thus, the smallest negative rep-
resentable is −2n−1. Now, if n = 1, −2n−1 = −1 is also the largest—and
thus, the only—negative integer representable. So let us now assume that
n ≥ 2.

To compute the largest negative that requires at least n bits to rep-
resent, we need the following observation: we saw above that we can
add 1’s to the left of the binary representation of a negative number, and
we will still be left with the same negative number, although now rep-
resented in two’s complement with a greater number of bits. Conversely,
given the binary representation of a negative number, in which the two
leftmost bits are 1, we can remove the leftmost 1, and still be left with
the representation of the same number, albeit with less bits. Hence, the
biggest negative number that requires at least n bits to represent, is one
where the two leftmost bits are not 1. The largest such number is the
one where the bit 2n−2 is 0, and all the other bits to its right are 1:
−2n−1 +

∑0
i=n−3 2

i = −2n−1 + (2n−2 − 1) = −2n−2 − 1. (Observe
that if n = 2, the summation is done over an empty set, and thus equals
0—but the result remains valid.) All of which combined means that at
least n bits are required to represent, in two’s complements, the integers
x verifying −2n−1 ≤ x < −2n−2, which resolves to n = ⌈log2(−x)⌉+ 1.
This formula was deduced assuming that n ≥ 2, but it is simple to ob-
serve that it also holds when n = 1, or equivalently, x = −1. Hence,
the minimum number of bits needed to represent a negative integer x, is
⌈log2(−x)⌉+ 1.

References
1. Shoup, Victor, 2008. A Computational Introduction to Number Theory and Algebra. New York: Cambridge

University Press, eBook edition edition. Cited on p. 3.


	Introduction: Rules Of Two's Complements
	Modular Arithmetic
	Modular Arithmetic In Binary
	To Wrap Or Not To Wrap (Around)
	Bounds & Padding
	References

