
Exponentiation in R:
from integer to real exponents
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Abstract. The present text provides the motivations (and/or proofs) for
the rules of the operation of raising a real number to integer, rational, and
real powers (exponents). We take for granted the usual properties of real
numbers, such as existence and uniqueness of additive and multiplica-
tive identities and inverses (multiplicative inverses for nonzero elements
only), etc.

1 Introduction
Integers exponents are taken care of in §(2), rational ones in §3, and
reals in §4. For the last one, knowledge of sequences, and in particu-
lar about computing their limits, is assumed. In the remainder of this
section, we deal with some auxiliary topics that, are either put here for
completeness—which is the case of the next (named) paragraph—or that
will be needed in what is to follow.
The sui generis case of 00. In what follows, the basis of the exponentia-
tion will always required to be nonzero. Moreover, we will define below
that, for nonzero a, a0 = 1. However, it is clear that for any positive inte-
ger x, we must have 0x = 0. We will also show below that if x is a negative
integer, then 0x should be the multiplicative inverse of 0−x, which is not
defined, as 0−x = 0. But exponentiation to a rational exponent will be
defined based on exponentiation to an integer power, and similarly expo-
nentiation to a real exponent will be defined based on exponentiation to
a rational power. Hence, it will turn out that it is also nonsensical to talk
about raising 0 to a negative rational or real power—but if x is either a
positive rational, or a positive real, we will have 0x = 0. Which leaves
out only the case of x = 0, i.e., of 00.

The usual convention is to define 00
def
= 1, because this turns out to

massively convenient. For example, consider the following application of
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the binomial theorem:

(1+ x)n =

n∑
k=0

(
n

k

)
xk (1.1)

This holds for x = 0, if and only if 00 = 1. For another example, consider
the function y = x0. It is equal to the constant function y = 1 if and only
if 00 = 1.
Important caveat: The above considerations do not apply to limits!
For example, if we have a function f such that limx→a f(x) = 0 and
another function g such that limx→a g(x) = 0, we CANNOT conclude
that limx→a f(x)

g(x) = 1!! In this case the result is indeterminate. For
more details, see the relevant Wikipedia page.1

Well-defined operations. In what follows, we will at times speak of
operations being well-defined. What this means is that the same operation,
on the same operands, must produce always the same result. In the case
of fractions, it also means that the result of a given operation must be the
same, regardless of whatever fraction one chooses to represent a particular
rational number.
Applying integer exponentiation to (and taking roots of) both sides
of an equality. Let α,β be arbitrary real numbers. Then the following
holds:
• Exponentiation. If α = β, then for any n we have αn = βn, due to
exponentiation being a well-defined operation. If n is odd, the converse
is also valid: αn = βn implies α = β. If this were not the case, then
letting c = αn = βn, we would conclude that the equation xn = cwith
an odd n has at least two different solutions, which is not true in R. If
n is even, then from αn = βn we can only conclude that α = ±β.2

• Roots. If α = β, then n
√
α = n

√
β, for any positive n, as n

√ is a
well-defined operation. The converse also holds, for any n: n

√
α = n

√
β

implies α = β. This follows from the previous exponentiation property:
n
√
α = n

√
β⇒ ( n

√
α)n = ( n

√
β)n ⇔ α = β.

From here, it easily follows that for equations, taking roots of both
hand sides is always fine, as is raising both sides to an odd exponent. But
raising both sides to an even exponent, may introduce additional solu-
tions: the prototypical example is the equation x = 2, which has only
one solution, versus x2 = 4, which has two—namely, 2 and −2. How-
ever, care is still needed when taking roots of both sides; for example, we
have x2 = 4 ⇔ √

x2 =
√
4, but this is not equivalent to x = 2! The

correct simplified form is |x| = 2. Which brings us to our next topic…
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Simplifying roots and powers. These are immediate consequences the
preceding properties. For any real number c, and any positive integer
n, if n

√
c is defined, we always have ( n

√
c)n = c—we might also have

(− n
√
c)n = c, if n is even and c positive, but ( n

√
c)n = c always holds.

As for n
√
cn, we have for an odd n, n

√
cn = c. But if n is even, then

we can only conclude that n
√
cn = |c|. Both equalities again hold for any

real c.

2 Integer Exponents
Let a be a nonzero real number, andm,n be positive integers. We define

am def
= a · a · a · · ·a︸ ︷︷ ︸

m times
(2.1)

From the associativity of multiplication, it is straightforward to observe
the exponent sum rule, viz. aman = am+n. It now follows easily that
we also have the exponent multiplication rule:

(am)n = am · am · am · · ·am︸ ︷︷ ︸
n times

= amn (2.2)

The only missing property is the basis multiplication rule, (ab)m =
ambm, where b is a nonzero real number, just as a (and m continues
to be a positive integer). Unlike the properties above, this one depends
crucially on the fact that multiplication is commutative. This property is
shown by induction—and as the case when the exponent is 1 is trivial, I
shall start with m = 2: (ab)2 = (ab)(ab) = aabb = a2b2. One can
already see why commutativity is crucial. Assuming the property holds
for an arbitrary m, we have: (ab)m+1 = (ab)m(ab) = ambmab =
amabmb = am+1bm+1—which establishes the result for positive expo-
nents.
Remark 2.3 (Associativity of the exponents). From (2.2) it also fol-
lows that (am)n = (an)m. Also, when there are three or ore exponents,
we can multiply them in whichever order we wish: indeed, we have
((am)n)o = (amn)o but also, treating treatingam as number, ((am)n)o =
(am)no.

The “trick” we did above—treating am as number—can also be done
when the exponent is a negative integer, rational or real number. And so,
we will always have this associativity property. △

The zero exponent. It would be desirable to maintain these three proper-
ties when (at least) one of the exponents is zero. In particular, we would
like to have ama0 = am—which leads us to define a0 def

= 1. With this
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convention, it is obvious that aman = am+n and (am)n = amn still hold
when at least one ofm,n is zero (and the other is either zero or positive).
(ab)m = ambm also holds when setting m = 0.
Negative integers exponents. The next natural step is to define expo-
nentiation to negative integers, in a way that is coherent with these prop-
erties. In particular, one would like to have a1a−1 = a0 = 1, which leads
us to define a−1 as the multiplicative inverse of a, i.e., a−1 def

= 1/a. More
generally, we require that ama−m = a0 = 1, whence we define a−m

as the multiplicative inverse of am: a−m def
= 1/am. Note that this means

a−m = (am)−1, because by definition (am)−1 = 1/am. Additionally,
one can observe that (a−1)m is also the inverse of am:

am(a−1)m = am(1/a)m = aa · · ·a︸ ︷︷ ︸
m times

(1/a)(1/a) · · · (1/a)︸ ︷︷ ︸
m times

= 1 (2.4)

As in R multiplicative inverses are unique, this means we must have
a−m = (am)−1 = (a−1)m. Note that this holds even when m = 0.
This constitutes a very strong hint that we should attempt to generalise
the property (am)n = amn to negative exponents. Another cue in that
direction comes from the following observation: the inverse of 1/a is a,
which means we should have (a−1)−1 = a—but lo and behold, this is
exactly what we obtain from multiplying the exponents!

So, to prove that the exponent multiplication rule—(am)n = amn—
holds even when at least one of the exponents is negative, let m,n be
non-negative integers, and argue by cases:
• (a−m)n = [(a−1)m]n = (a−1)mn = a−mn = a(−m)n

• (am)−n = [(am)n]−1 = (amn)−1 = a−mn = am(−n)

• (a−m)−n = {[(am)−1]−1}n = (am)n = a(−m)(−n)

Next comes the exponent sum rule, aman = am+n—which also holds for
negative exponents. We prove so by again reasoning by cases (let again
m,n be non-negative integers):
• a−man = (a−1)man. As a−1a = 1, we have:

(a−1)man = a0 = a−m+n if m = n

(a−1)man = (a−1)m−n = a−m+n if m > n

(a−1)man = an−m = a−m+n if m < n

(2.5)

But in either case, the property holds.
• ama−n = am(a−1)n. Reasoning in a similar manner as above, we have:

am(a−1)n = a0 = am+(−n) if m = n

am(a−1)n = (a−1)n−m = am+(−n) if m < n

am(a−1)n = am−n = am+(−n) if m > n

(2.6)
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But again in either case, the property holds.
• a−ma−n = (a−1)m(a−1)n = (a−1)m+n = a−m+(−n)

Lastly, to show that the basis multiplication rule, (ab)m = ambm, also
holds for negative exponents, requires observing that (ab)−1 = b−1a−1,
because abb−1a−1 = a1a−1 = 1. Now we have:

(ab)−m = [(ab)−1]m = [b−1a−1]m = (b−1)m(a−1)m = a−mb−m

(2.7)
Division. The above properties allow us to relate easily division with
integer exponentiation. Let a, b,m,n be integers, with a, b nonzero.
We have: (a

b

)n

=

(
a× 1

b

)n

= an

(
1

b

)n

= an(b−1)n

= anb−n = an 1

bn
=

an

bn

(2.8)

And also:
am

an
= am × 1

an
= ama−n = am−n (2.9)

3 Rational Exponents
Let a be a nonzero real, and m/n be (a fraction representing) a rational
number. When thinking about how to define am/n, one arrives quickly at
the desirability of one such definition verifying the following properties:

1. Ifm/n is actually an integer, let us say k, then we must have am/n =
ak. After all, we want the operation of exponentiation to a rational
exponent to extend the operation of exponentiation to a integer expo-
nent.

2. am/n = (a1/n)m = (am)1/n. If this did not hold, the operation of
exponentiation to a rational exponent clearly could not satisfy a prop-
erty equivalent to (2.2) for the operation of exponentiation to a integer
exponent.

3. Ifm/n and o/p are equivalent fractions (i.e., they represent the same
rational number), then am/n = ao/p. Without this, the operation of
exponentiation to a rational exponent would not be well-defined.

Note that settingm = n in property 2, we obtain: an/n = (a1/n)n =
(an)1/n. Assuming a stronger version of it—namely, adding the require-
ment that an/n = a (which is a particular case of property 1, for k = 1)—
we can prove property 1 for any general integer k:
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Lemma 3.1 (Property 1). If m/n is an integer, say k, then am/n = ak.
Proof. We have m/n = k ⇔ m = nk. Thus am/n = a(nk)/n =
(a1/n)nk, and by the properties of integer exponents, we can write this as
{[(a1/n)]n}k = ak. ■

With the same assumption, we can also prove property 3:
Lemma 3.2 (Property 3). If m/n and o/p are two equivalent fractions,
with n, p positive, then am/n = ao/p.
Proof. If m/n and o/p are equivalent, this means that mp = no. We
have: am/n = [(am/n)p]1/p = (a(pm)/n)1/p = (a(no)/n)1/p = (ao)1/p =
ao/p, where the first equality follows from the stronger form of property 2,
the second is due to lemma 3.3 below, the third comes from the condition
of fraction equivalence, the fourth follows from lemma 3.1, and the fifth
from the original form of property 2.3 ■

Lemma 3.3. Given integers m,n, l, with n positive, we have (am/n)l =
(al)m/n = a(lm)/n.
Proof. (am/n)l = [(a1/n)m]l, which by the properties of exponentiation
to an integer exponent, is equal to (a1/n)lm, which equals a(lm)/n—where
both equalities follow from (the original form of) property 2. And simi-
larly, (al)m/n = [(al)m]1/n = (alm)1/n = a(lm)/n. ■

This means that after having a tentative definition of exponentiation
to a rational exponent, we only need to check for the strengthened version
of property 2:
Proposition 3.4. If the definition of exponentiation to a rational exponent
verifies am/n = (a1/n)m = (am)1/n, and for m = n, am/n = a, then it
verifies properties 1 and 3 above (in addition to trivially verifying property 2).
Proof. Immediate from the previous lemmas. ■

Before moving on to define exponentiation with a rational exponent,
note an easy corollary to lemma 3.3: as nmust be positive, when l = −1,
we have
Corollary 3.5. Given integers m,n, with n positive, we have (am/n)−1 =
(a−1)m/n = a−m/n = a(−m)/n.

Let us now tackle the question of actually defining exponentiation to
a rational exponent. As noted above, setting m = n in condition 1
shows we want to have (a1/n)n = a, which means that we must set
a1/n def

= n
√
a—which not possible if a < 0 and n is even. This vio-

lates property 2, because reversing the order of the exponents, we obtain
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(an)1/n which is defined even when a < 0, because as n is even, an will
be positive—and hence n

√
an will be defined (and indeed, it will be equal

to |a|). And this is not the only thing that can go wrong: consider, for
instance, the case of (−8)1/3. On the one hand, this equals 3

√
−8 = −2.

On the other, consider (−8)2/6: it can either be equal to 2 (rewriting it
as [(−8)2]1/6 = 6

√
(−8)2 = 6

√
64 = 2), or it can be undefined in the

reals (rewriting it as [(−8)1/6]2 = ( 6
√
−8)2)—thus violating property 2.

Which of course means we have violated property 3, for 1/3 and 2/6 are
equivalent fractions.

Hence, even though exponentiation of a negative real number to a
rational exponent may, in certain circumstances make sense, we establish
that:
In the general case, exponentiation of a real number to a rational

power is defined only for POSITIVE real numbers.
We now define exponentiation with a rational power as follows: given
integers m,n, with n positive, we have:

am/n def
=

n
√
am (a > 0) (3.6)

This means, in particular, that a1/n = n
√
a. n must be positive as it is

the index of a root—but this causes no trouble, as any rational number
can be expressed via a fraction with a positive denominator, and property
3—which we will verify momentarily—ensures that the end result is the
same, regardless of the fraction used. Now, by proposition 3.4, besides
property 2, we need to check that an/n = a. This translates to n

√
an,

which, given that a > 0, is always equal to a. To show that property
2 holds, we need to show that we always have (a1/n)m = (am)1/n, i.e.,
( n
√
a)m = n

√
am. This is taken care of by lemma 3.10, which requires a

couple of previous results.
Lemma 3.7. Let n be a positive integer, and let a, b be reals such that n

√
a

and n
√
b are defined. Then n

√
ab = n

√
a

n
√
b always holds.

Proof. From the properties of integer exponentiation shown on the pre-
vious section, we have: ( n

√
a

n
√
b)n = ( n

√
a)n( n

√
b)n = ab, and also

( n
√
ab)n = ab. From both conditions we could have n

√
a

n
√
b = n

√
ab,

but also, if n is even, n
√
a

n
√
b = − n

√
ab. But the latter condition is im-

possible, because n
√
ab and n

√
a

n
√
b always have the same sign, regardless

of whether n is odd or even: n
√
ab is negative if n is odd, and a and b

have different signs (one positive and other negative). For n
√
a

n
√
b to be

negative, one of the roots has to be positive, and the other negative. This
is only possible if n is odd, and one of a, b is negative, and the other
positive—and so n

√
a

n
√
b is negative if and only if n

√
ab is negative. Ob-

viously, n
√
a

n
√
b = 0 if and only if n

√
ab = 0. Hence, n

√
a

n
√
b is positive
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if and only if n
√
ab is positive—and the conclusion that n

√
a

n
√
b = n

√
ab

is now immediate. ■

Corollary 3.8. n
√

a/b = n
√
a/

n
√
b.

Proof.
n

√
a

b
=

n

√
a× 1

b
= n

√
a

n

√
1

b
(3.9)

We have ( n
√

1/b)n = 1/b = (1/ n
√
b)n, from whence one concludes

that n
√

1/b = 1/
n
√
b. This together with (3.9) yields the desired conclu-

sion:
n
√
a

n

√
1

b
= n

√
a

1
n
√
b
=

n
√
a

n
√
b

■

Lemma 3.10 (Property 2). For any integer m, we have ( n
√
a)m = n

√
am.

Proof. If m = 0 the result is obvious. If m is positive, then the case
m = 1 is trivial, and the casem = 2 follows from lemma 3.7 setting b =
a. The case for an arbitrary m > 2 now follows via a simple inductive
argument: if for an arbitrarym we have ( n

√
a)m = n

√
am, then form+1

comes: ( n
√
a)m+1 = ( n

√
a)m( n

√
a) = n

√
am n

√
a =

n
√
am+1.

If m is negative, then ( n
√
a)m = (1/ n

√
a)−m, which by the previous

corollary is equal to ( n
√

1/a)−m, i.e., ( n
√
a−1)−m. As −m is positive, by

the result of the above paragraph, this is the same as ( n
√
(a−1)−m) =

n
√
am. ■

So definition 3.6 satisfies the stronger version of property 2, which per
proposition 3.4, entails that it verifies properties 1 and 3 as well. And now
that we have shown that definition 3.6 satisfies the three required condi-
tions, we can proceed to prove the same three properties of exponentiation
with integer exponents—exponent addition, exponent multiplication, and
basis multiplication—to the case of rational exponents.

First, we have the rule for adding exponents. As we can always assume
the denominators are equal, we have:

xa/cxb/c = (x1/c)a(x1/c)b = (x1/c)a+b = x(a+b)/c (3.11)

where in the middle step we have used the property of exponent addition
for integer exponentiation.

Next comes the rule for multiplying exponents—but a previous result
is required.
Lemma 3.12. Let x be a real number, and a, b two positive integers. We
have a

√
b
√
x = b

√
a
√
x = ab

√
x.
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Proof. Let y = a
√

b
√
x. As x is a positive real, y will also be a positive

real. And so y = a
√

b
√
x⇔ ya = b

√
x⇔ (ya)b = x. But then x = (yb)a

holds, from which we obtain y = b
√

a
√
x. And finally, via (2.2) we also

have x = yab ⇔ y = ab
√
x. ■

Restated in the language of rational exponents, this result shows that we
have: (x1/a)1/b = (x1/b)1/a = x1/(ab) (although keep in mind that we
established above that rational exponentiation is defined only for positive
basis).

We can now derive the exponent multiplication rule:

(xm/n)o/p = {[(xm)1/n]1/p}o

= [(xm)1/(np)]o = (xm/(np))o = x(mo)/(np)
(3.13)

The first equality uses property 2, the second lemma 3.12 (and expo-
nent associativity, cf. remark 2.3), and the third and forth, lemma 3.3.

Finally, the basis multiplication rule:

(ab)m/n = [(ab)1/n]m = [a1/nb1/n]m

= (a1/n)m(b1/n)m = am/nbm/n
(3.14)

where the first and forth equalities use property 2, the second uses lemma
3.7, and the third the exponentiation of product rule for integer exponents.
Division. Just as in §2, we can derive similar properties for division
with rational exponents, as those derived for integer exponents, reasoning
similarly. That is to say, we get the following analogues of (2.8) and (2.9)
(where µ, ν are rational numbers):(a

b

)ν

=

(
a× 1

b

)ν

= aν

(
1

b

)ν

= aν(b−1)ν = aνb−ν = aν × 1

bν
=

aν

bν

(3.15)

And also:
aµ

aν
= aµ × 1

aν
= aµa−ν = aµ−ν (3.16)

4 Real Exponents
To show the same three properties when not just the base, but also the
exponents are real numbers, we need to first define ax, when x is an arbi-
trary real number (as usual, the base a is a nonzero real number). And to
do so, requires understanding one of the ways in which the reals numbers
can be constructed, taking the rationals as a starting point. The details
are well beyond the scope of the present text, but the idea is to represent



§4 – Real Exponents 10

numbers that cannot be expressed as a ratio of integer quantities—and
hence, are not rational numbers—as sequences of rational numbers, that
“converge,” in a specific sense, to the real number we want to represent.4
These sequences are called Cauchy sequences, and the important points
for our current endeavour are:
• For any real x, there exists at least one sequence of rational numbers,
{xn} that converges to x (this is denoted xn → x).

• Given two real numbers defined by their respective Cauchy sequences, we
add and multiply them by adding and multiplying the respective se-
quences, term-wise.

• For reciprocation—i.e., computing the multiplicative inverse—we rely
on the following property: for any nonzero real x, there exists at least
one rational Cauchy sequence {xn} that converges to x, for which all
terms are nonzero. Then we have x−1 =

{
x−1
n

}.
We now define exponentiation to a real power as follows (where x and
{xn} are as above):

ax def
= lim

n→+∞axn (4.1)

To get a feeling of why this definition makes sense, let m/n be a
rational number, i.e., m,n are integers, and n ̸= 0. Then one sequence
of rationals that converges to m/n is the constant sequence, namely the
sequence that has all terms x1, x2, . . . equal tom/n. Then the above limit
converges to am/n. But as in the previous sections, we must show that
this definition is proper. Which means two things: first, we must show
that when {xn} is a Cauchy sequence (i.e., a real number), then so is {axn};
and second, given that for any real number x, one can always find more
than one Cauchy sequence that converges to x, we need to show that the
limit above remains the same for any such Cauchy sequence. This will
take quite a bit of mathematical labour.

To begin with, we require the following lemma, which we will state
without proof.5

Lemma 4.2. Let a, b, k be real numbers, with k ̸= 0. Then if a < b, we
have:
• ka < kb, if k > 0.
• ka > kb, if k < 0.

We require some other ancillary results.
Lemma 4.3. Let a, b, c, d be real numbers, with b, c positive. Then if a < b

and c < d hold, so does ac < bd.
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Proof. a < b⇔ ac < bc, and c < d⇔ bc < bd, both by lemma 4.2.
The result now follows from the transitivity of <. ■

Lemma 4.4. Let x be a positive real. If x > 1, then for any positive integer
p, we have xp > xp−1 > · · · > x > 1. If x < 1 is the case, then 0 < xp <

xp−1 < · · · < x < 1.
Proof. By induction. For the first case, for p = 1 it is trivially true that
x1 > 1. Assuming that for an arbitrary pwe have xp > xp−1 > · · · > x >

1, for p+ 1 we obtain, via lemma 4.2: xp > xp−1 ⇔ xp+1 > xp—and by
the transitivity of <, we conclude that xp+1 > xp > xp−1 > · · · > x > 1

also holds. The proof for the case x < 1 is similar, with an extra remark:
we can never have xp = 0, for as R has no zero divisors, that would entail
that x = 0, which goes against our hypothesis that x is a positive real. ■

Lemma 4.5. Let n ≥ 1 an integer, and x a non-negative real. Then 0 ≤
x ≤ 1 if and only if 0 ≤ x1/n ≤ 1. In particular, 0 < x < 1 if and only if
0 < x1/n < 1.
Proof. Begin by observing that if x = 0 or x = 1, the result is obvious,
because:
• x = 0 if and only if x1/n = 0, because the latter condition is equivalent
to x = 0n, which means x = 0.

• x = 1 if and only if x1/n = 1, because the latter condition is equivalent
to x = 1n, which means x = 1.

Thus, we need only show that 0 < x < 1 if and only if 0 < x1/n < 1.
Let y = x1/n ⇔ yn = x. (→) To derive a contradiction, assume that
0 < x < 1 but that y > 1. By lemma 4.4, we also have yn > 1, i.e.,
x > 1, which is against the hypothesis. (←) We assume 0 < y < 1.
Again by lemma 4.4, we also have 0 < yn < 1, i.e., 0 < x < 1. ■

Corollary 4.6. Let n ≥ 1 an integer, and x a non-negative real. Then x > 1

if and only if x1/n > 1.
Proof. Immediate from the negation of both sides of the equivalence (bi-
conditional) of lemma 4.5. ■

Lemma 4.7. Let x be a positive real, and let q, r be integers. If x > 1, then
xq > xr if and only if q > r. If 0 < x < 1, then xq > xr if and only if
q < r.
Proof. Let x > 1. (→) We assume that xq > xr—from which follow
several cases:
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1. q and r are both positive. By lemma 4.4 we have:
1 < x < · · · < xr−1 < xr < xr+1 < · · · < xq

from whence follows that q > r.
Before continuing, note the following: we have q = r if and only if xq =
xr: the forward direction follows from the fact that exponentiation to a
integer power is well-defined, cf. §2. The backward direction follows via
the contrapositive: if we had q ̸= r, then by a similar reasoning to what
we did above, we would conclude that either xq > xr or xq < xr—which
is a contradiction either way. Hence, as we assume that xq > xr, we
cannot have q = r—which means that whenever q > r is not the case,
then we must have q < r (and vice-versa).
2. r = 0. We have xq > xr = x0 = 1, and if it were the case that q < r,

i.e., that qwas negative, then−qwould be positive, and by lemma 4.3
we would have, as x > 1, that x−q > 1 ⇔ 1/x−q < 1/1 ⇔ xq < 1,
which is contradictory. Thus we conclude q > r.

3. q = 0. We have 1 = xq > xr, and if it were the case that q < r, i.e.,
that r was positive, then by lemma 4.3 we would have, as x > 1, that
xr > 1, which is contradictory. Thus we conclude q > r.

4. q and r are both negative. Then we can write q = −q ′ and r = −r ′,
with q ′, r ′ positive integers. We have xq > xr ⇔ x−q ′

> x−r ′ ⇔
1/xq

′
> 1/xr

′ ⇔ xq
′
< xr

′, from which, by what we proved in bullet
1. above, follows that q ′ < r ′ ⇔ −q ′ > −r ′ ⇔ q > r.
(←) We assume that q > r—and again have several cases:

1. q and r are both positive, or q is positive and r = 0. Then as x > 1,
xq > xr follows directly from lemma 4.4.

2. q = 0 and r negative. As r is negative, we have xr = (1/x)−r, with−r

positive and 1/x < 1. Thus by lemma 4.4 comes that 1 > (1/x)−r =
xr, from whence follows xq = x0 = 1 > xr.

3. q and r are both negative. Then we can write q = −q ′ and r = −r ′,
with q ′, r ′ positive integers. We have q > r ⇔ −q ′ > −r ′ ⇔ q ′ <
r ′. By the result of the first bullet in this new enumeration, we have
xq

′
< xr

′ ⇔ 1/xq
′
> 1/xr

′ ⇔ x−q ′
> x−r ′ ⇔ xq > xr.

Thus we are done with the x > 1 case—so let us now assume that
x < 1. We have

xq > xr ⇔ [(x−1)−1]q > [(x−1)−1]r

⇔ (
1

x

)−q

>

(
1

x

)−r
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Now 1/x > 1, so by the first part of this proof, we immediately have
−q > −r⇔ q < r. ■

This is also valid for rational exponents:
Proposition 4.8. Let x be a positive real, and let q, r be rationals. If x > 1,
then xq > xr if and only if q > r. If 0 < x < 1, then xq > xr if and only if
q < r.
Proof. Write q and r as fractions with a common positive denominator:
q = q ′/d and r = r ′/d. Thus, xq > xr ⇔ (x1/d)q

′
> (x1/d)r

′. We have
x > 1 if and only if x1/d > 1 (corollary 4.6) if and only if q ′ > r ′ (lemma
4.7), which of course holds if and only if q > r.

The reasoning is similar for x < 1, but we need lemma 4.5, rather
than corollary 4.6. ■

Corollary 4.9. If x > 1 is a real and q is a rational number, then xq > 0.
In particular, xq > 1 if and only if q > 0, and 0 < xq < 1 if and only if
q < 0.
The first bi-conditional follows from setting r = 0 in proposition 4.8. For
the second bi-conditional, set q = 0 in the same proposition; the result
now follows from the fact that xr > 0 always holds (lemma 4.4). The fact
that xq is always positive is immediate from both bi-conditionals.

For completeness, although it is not needed in what follows, we have
following “analogue” result to corollary 4.9 (it is shown in the exact same
manner):
Corollary 4.10. If 0 < x < 1 be is a real and q is a rational number, then
xq > 1 if and only if q < 0, and 0 < xq < 1 if and only if q > 0.

The last required piece is the following lemma—the proof of which is
rather long, and is thus relegated to §A.
Lemma 4.11. For any positive real x, we have x1/n → 1.

We can now show that definition 4.1 is proper. We split the proof into
the next two lemmas.
Lemma 4.12. Let x > 0 be a real, and {qn} a Cauchy sequence of rational
terms. Then the sequence {xqn} is also a Cauchy sequence.
Proof. If x = 1 the statement is trivial, and so we are left with two cases:
x > 1 and x < 1. We start with x > 1. We have:

|xqn − xqm| =
∣∣xqm(xqn−qm − 1)

∣∣ = |xqm| ·
∣∣xqn−qm − 1

∣∣
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As {qn} is a Cauchy sequence, it is bounded and in particular, it has
an upper bound, let us say M. As x > 1, by proposition 4.8 we have
xqm ≤ xM, and furthermore, as by corollary 4.9, both sides are positive, it
is also the case that |xqm| ≤ xM. Moving on to the next parcel, via lemma
4.11 (limk→∞ x1/k = 1), it follows that for any real ε > 0, there exists p
such that

∣∣x1/k − 1
∣∣ < εx−M, for k ≥ p—and in particular,

∣∣x1/p − 1
∣∣ <

εx−M. And lastly, again due to {qn} being a Cauchy sequence, there exists
r such that |qn − qm| < 1/p, for all m,n ≥ r. From |qn − qm| < 1/p

follows that qn−qm < 1/p. Again by proposition 4.8 we have xqn−qm <

x1/p. Now we have two possibilities: either qn > qm or qn < qm (the
case qn = qm is trivial). If qn > qm, then corollary 4.9 shows that
both members are greater than 1 (and thus positive), and so we have
|xqn−qm − 1| <

∣∣x1/p − 1
∣∣. All of which taken together shows that given

any ε > 0, there exists r such that, for m,n ≥ r we have:

|xqn − xqm| = |xqm| ·
∣∣xqn−qm − 1

∣∣ < xMεx−M = ε

If qn < qm, we have:

|xqn − xqm| = |xqm − xqn| =
∣∣xqn(xqm−qn − 1)

∣∣ = |xqn| ·
∣∣xqm−qn − 1

∣∣
And by reasoning as above, we conclude that form,n ≥ r (all as above),
we again have |xqn−qm − 1| <

∣∣x1/p − 1
∣∣. Thus we have shown that for

any ε > 0, there is a point from which we have |xqn − xqm| < ε—and
this establishes that {qn} is indeed a Cauchy sequence.

Now for the x < 1 case, we still have |xqn − xqm| = |xqm|·|xqn−qm − 1|,
which we can rewrite as:∣∣(1/x)−qm

∣∣ · ∣∣(1/x)qm−qn − 1
∣∣

As {qn} is bounded, it has a lower bound, which will be an upper
bound of {−qn}—letM be that upper bound. Now 0 < x < 1means that
1/x > 1—and hence, by proposition 4.8 we have (1/x)−qm ≤ (1/x)M,
and moreover, by corollary 4.9, both sides are positive, meaning we have
|(1/x)−qm| ≤ (1/x)M. Moving on to the next parcel, via lemma 4.11
we have limk→∞(1/x)1/k = 1—and hence, given any ε > 0, there exists
p such that

∣∣(1/x)1/k − 1
∣∣ < ε(1/x)−M, for k ≥ p—and in particular,∣∣(1/x)1/p − 1

∣∣ < ε(1/x)−M. And due to {qn} being a Cauchy sequence,
there exists r such that |qm − qn| < 1/p, for allm,n ≥ r, which entails
that qm−qn < 1/p. By proposition 4.8 we have (1/x)qm−qn < (1/x)1/p.
Assuming we have qm > qn, corollary 4.9 shows that both members are
greater than 1 (and thus positive), and so we have |(1/x)qm−qn − 1| <∣∣(1/x)1/p − 1

∣∣ (if qm < qn, we go around that difficulty the same way
we did for the case of x > 1, cf. above). All of which taken together shows
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that given any ε > 0, there exists r such that, for m,n ≥ r we have:

|xqn − xqm| = |xqm| ·
∣∣xqn−qm − 1

∣∣ < (1/x)Mε(1/x)−M = ε

which shows that {xqn} is a Cauchy sequence also when x < 1. And we
are done. ■

Lemma 4.13. Let x > 0 be a real, and {qn} and {q ′
n} two Cauchy sequences

(of rational terms) that represent x. Then limn→∞ xqn = limn→∞ xq
′
n.

Proof. By the properties of the limits of sequences, we have limn→∞ xqn =
limn→∞ xqn−q ′

n ·xq ′
n = limn→∞ xqn−q ′

n · limn→∞ xq
′
n, because by the pre-

vious lemma, both latter limits exist. Which means we need only show
that limn→∞ xqn−q ′

n = 1. This is obvious when x = 1, which means we
are again left with two cases, viz. x > 1 and x < 1. We take x > 1 first.

From lemma 4.11 (limk→∞ x1/k = 1), follows that for any real ε > 0,
there exists r such that

∣∣x1/k − 1
∣∣ < ε, for k ≥ r. This latter condition en-

tails, in particular, that x1/k < 1+ε. And from the usual properties of lim-
its of sequences, we can also derive from lemma 4.11 that limk→∞ x−1/k =
1—which, via a similar reasoning, means that there exists s such that
1 − ε < x−1/k, for k ≥ s. Let t = max{r, s}. As {qn} and {q ′

n} are
Cauchy sequences with the same limit, we have limn→∞ qn − q ′

n = 0.
This means that there exists p such that −1/t < qn − q ′

n < 1/t, for
n ≥ p. By proposition 4.8, this is equivalent to x−1/t < xqn−q ′

n < x1/t.
This is to say that, for n ≥ p, we have:

1− ε < x−1/t < xqn−q ′
n < x1/t < 1+ ε

As ε is positive but arbitrary, this shows that limn→∞ xqn−q ′
n = 1.

The case for x < 1 is similar, but for a few changes: we want r such
that 1 − ε < x1/k for k ≥ r, and s such that x−1/k < 1 + ε for k ≥ s.
Then from −1/t < qn−q ′

n < 1/t (for n ≥ p) by proposition 4.8 comes
x−1/t > xqn−q ′

n > x1/t, and from this the conclusion (idem):

1+ ε > x−1/t > xqn−q ′
n > x1/t > 1− ε

Again showing that limn→∞ xqn−q ′
n = 1, now for x < 1. ■

Lemmas 4.12 and 4.13 together establish that definition 4.1 is proper.
Thus, we can now proceed to prove the usual three properties of exponen-
tiation—viz., exponent addition and multiplication, and basis multiplica-
tion—also for the case of real exponents.

Let x, y, q, r be real numbers, with x, y positive, and let {qn} → q

and {rn} → r be Cauchy sequences representing q and r, respectively.
First comes the rule to add exponents. We have:
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xq+r = lim
n→∞ xqn+rn = lim

n→∞ xqnxrn =
(
lim
n→∞ xqn

)(
lim
n→∞ xrn

)
= xqxr

where the second equality comes from the exponent addition rule for ra-
tional exponents, and the third equality from the usual properties of limits
of sequences.

Next comes the rule of exponent multiplication. We have

(xq)r = lim
m→∞

(
lim
n→∞ xqn

)rm

In §B it is shown that we have (limn→∞ xqn)rm = limn→∞(xqn)rm (note
that m is fixed). And each of the terms on the right hand side is, by
the properties of exponentiation to a rational exponent, equal to xqnrm.
Thus, rm is a constant value, and so as {qn} is a Cauchy sequence, so is
{qnrm}—and moreover, we have limn→∞ qnrm = qrm. That is, we have:

(xq)r = lim
m→∞

(
lim
n→∞ xqn

)rm
= lim

m→∞
(
lim
n→∞ xqnrm

)
= lim

m→∞ xqrm = xqr

where the fourth equality comes from the fact that, as {rm} → r, then
{qrm}→ qr (as {rm} is Cauchy, so is {qrm}).

Lastly, comes the basis multiplication rule. We have:

(xy)q = lim
n→∞(xy)qn = lim

n→∞ xqnyqn

=
(
lim
n→∞ xqn

)(
lim
n→∞ xqn

)
= (xq)(yq)

Division. A virtually identical reasoning that led to equations (2.8) and
(2.9) in §2, and (3.15) and (3.16) in §3, can also be done in R, yielding
(where µ, ν are now reals numbers):(a

b

)ν

=
aν

bν

aµ

aν
= aµ−ν

A Proof of lemma 4.11
We need some auxiliary results to prove lemma 4.11, which we begin by
restating.
Lemma 4.11. For any positive real x, we have x1/n → 1.
Lemma A.1. Let {xn} be a bounded sequence and {yn}→ 0 another conver-
gent sequence. Then {xnyn}→ 0.
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Proof. Let M be a bound of {xn}, which is to say that for all n, we have
|xn| ≤ M. If M = 0, this means {xn} is the all zero sequence, which
in turn means the result is obvious. Thus, assume that M > 0.6 Now
given any real ε > 0, because {yn} → 0 there exists p such that |yn| <
εM−1, for n ≥ p. And thus |xnyn| = |xn||yn| < MεM−1 = ε, which
establishes that {xnyn}→ 0. ■

Lemma A.2. Let {xn} be a bounded and monotone sequence. Then it is con-
vergent.
Proof. Suppose {xn} is an increasing sequence, and let c = sup {xn}.
By definition of supremum, for any real ε > 0 there exists p such that
c − ε < xp. And as {xn} is increasing, it is also the case that for all
n ≥ p, we also have c−ε < xn. But this latter condition implies c−ε <

xn < c+ ε⇔ |xn − c| < ε, which establishes that limn→∞ xn = c, thus
showing that {xn} is convergent.

If {xn} is a decreasing sequence, we set c = inf {xn} and proceed
analogously. ■

Lemma A.3. Let 0 < x < 1. Then {xn}→ 0.
Proof. By lemma 4.4 for x < 1, {xn} is strictly decreasing, and bounded
from below by 0. Thus by lemma A.2 it is convergent—let its limit be l.
But then, by the usual limit laws, we have limn→∞ xn+1 = limn→∞ x ·
xn = x limn→∞ xn = xl. However, {xn+1

} is just {xn} minus its first
term (x1)—and hence, they must have the same limit. As x ̸= 1, we have
xl = l⇔ l = 0. ■

Lemma A.4. The sequence {xn} converges to 0 if |x| < 1, converges to 1 if
x = 1, and diverges otherwise (i.e., if x = −1 or |x| > 1).
Proof. For x = 1, the result is obvious. If x = −1, then {xn} has
two subsequences with different limits ({1} and {−1}), and is accord-
ingly divergent. If 0 < x < 1, the result follows from lemma A.3. If
−1 < x < 0, then {xn} = {(−1)n(−x)n} = {(−1)n} × {(−x)n}. As
0 < −x < 1, limn→∞(−x)n = 0, and as {(−1)n} is bounded, by lemma
A.1, {(−1)n(−x)n} converges to 0.

Finally, if x > 1 (resp. x < −1), we derive a contradiction by as-
suming that the limit limn→∞ {xn} exists—let it be equal to l. As 0 <

1/x < 1 (resp. −1 < 1/x < 0), by lemma A.3 (resp. the previous
paragraph) limn→∞(1/x)n = 0. We now have: limn→∞ xn(1/x)n =
(limn→∞ xn) (limn→∞(1/x)n) = l × 0 = 0. Which is obviously absurd,
because all terms of the sequence {xn(1/x)n} are equal to 1! ■

Lemma A.5. For any positive reals M, and ε, there exists a positive integer
n such that M1/n ≤ 1+ ε.
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Proof. Towards a contradiction, write the negation of what the lemma
says: there exist M > 0 and ε > 0 such that for all positive integers
n, M1/n > 1 + ε holds. This is equivalent to M > (1 + ε)n. And it
is impossible, because {(1+ ε)n} is strictly increasing (lemma 4.7), and
does not converge (lemma A.4)—and hence by the converse of lemma
A.2, it is not bounded. ■
Lemma A.6. For any positive reals M, and ε, there exists a positive integer
n such that 1− ε ≤ M1/n.
Proof. We will again derive a contradiction, and will also start by negat-
ing the lemma: there exist M > 0 and ε > 0 such that for all positive
integers n,M1/n < 1−ε holds. This is the same asM < (1−ε)n, which
is impossible:
• if 1 − ε ∈ ]−1, 1[, then {(1− ε)n} → 0 by lemma A.4, and so we can
find an n such that (1− ε)n < M/2 < M, for example.

• if 1− ε ∈ ]−∞, 1], then {(1− ε)n} will alternate between positive and
negative values, and thus it is impossible to have 0 < M < (1 − ε)n

for all n.
The conclusion now follows. ■
Lemma A.7. {x1/n} is strictly increasing if and only if 0 < x < 1, and
strictly decreasing if and only if x > 1.
Proof. Because both sides of the inequality x1/n < x1/(n+1) are positive,
it follows from lemma 4.3 (setting a = c and b = d) that we can raise
both sides to n + 1, yielding x(n+1)/n < x. As (n + 1)/n > 1, by
proposition 4.8 this holds if and only if 0 < x < 1—establishing that{
x1/n
} is strictly increasing. The case for x > 1 is identical. ■

We can finally prove lemma 4.11.
Proof of lemma 4.11. The case x = 1 is trivial, so we again have x > 1

and x < 1—and we start with the former. By lemma A.5 for any real
ε > 0 there exists a positive integerN such that x1/N ≤ 1+ ε. By lemma
A.7 {xn} is strictly decreasing, which means for any n ≥ N, we also have
x1/n ≤ 1+ε. But by corollary 4.6 we also have x1/n > 1, for any positive
integer n. Thus 1 < x1/n ≤ 1+ε, which implies that−ε < x1/n−1 ≤ ε,
for n ≥ N. This shows that x1/n → 1—for x > 1.

For x < 1, by lemma A.6 for any real ε > 0 there exists a positive
integerN such that 1−ε ≤ x1/N. By lemma A.7 {xn} is strictly increasing,
which means for any n ≥ N, we also have 1 − ε ≤ x1/n. But by lemma
4.5, we also have 0 < x1/n < 1, for any positive integer n. Thus 1− ε ≤
x1/n < 1, which implies that −ε ≤ x1/n − 1 < ε, for n ≥ N. This shows
that x1/n → 1, now also for x < 1. ■
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B Sequences and continuous functions
At the end of §4, we postponed to the present section the proof that
(limn→∞ xqn)rm = limn→∞(xqn)rm. This requires the notion of contin-
uous functions from calculus (which we state in the proof below).
Lemma B.1. Let X be a subset of R and f : X → R be a function. The
function f is continuous at point a ∈ X if and only if for every sequence {xn}
of points of X that converges to a, we have f(xn)→ f(a).
Proof. Let {xn} be a sequence of points of X such that {xn} → a. By
definition of convergent sequence, this means that (ε ∈ R andn, p ∈ N):

∀ε > 0 ∃p ∀n n ≥ p⇒ |xn − a| < ε (B.2)
(→) We assume f is continuous at a, and want to show that this implies
{f(xn)}→ f(a). By definition of continuity, the following holds:

∀ε > 0 ∃δ > 0 ∀x ∈ X 0 < |x− a| < δ⇒ |f(x) − a| < ε (B.3)
The condition we want to show—{f(xn)}→ f(a)—translates too:

∀ε > 0 ∃p ∀n n ≥ p⇒ |f(xn) − f(a)| < ε (B.4)
The first observation, is that for any n such that xn = a, (B.4) holds
trivially, so we can assume xn ̸= a. For these, it follows from (B.3) that
given any real ε > 0, there exists a real δ > 0 such that ∀x ∈ X, 0 <

|xn − a| < δ ⇒ |f(xn) − f(a)| < ε. And from (B.2) we know that for
that δ, there exists p such that n ≥ p⇒ |xn − a| < δ. Combining these
two statements yields (B.4).
(←) We assume that {xn}→ a implies {f(xn)}→ f(a), for any arbitrary
sequence {xn} of points of X. We want to show that this in turn implies
that f is continuous at a, i.e., that limx→a f(x) = f(a). We will prove
this via the contrapositive, that is, we will assume that f is not continuous
at a, and show that in such a case, there exists a sequence {xn} such that
{xn}→ a and {f(xn)} ̸→ f(a).

So, if f is not continuous at a, this means that the following condition
holds:

∃ε > 0 ∀δ > 0 ∃x ∈ X 0 < |x− a| < δ∧ |f(x) − a| ≥ ε (B.5)
Fix an ε for which (B.5) holds. Then, if we set δ = 1, there exists at least
one value of x such that the sub-condition 0 < |x− a| < δ∧|f(x) − a| ≥
ε holds—let x1 equal that value of x. More generally, let xn be a value of
x for which the same sub-condition holds when δ = 1/n. It is clear that
{xn}→ a, but {f(xn)} ̸→ f(a), which concludes the proof. ■
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An equivalent formulation of this lemma is that for any sequence {xn}
that converges to a point at which a function f is continuous, we have
limn→∞ f(xn) = f (limn→∞ xn).

We can prove that (limn→∞ xqn)rm = limn→∞(xqn)rm. Recall thatm
is fixed, meaning that rm is constant (cf. the ending of §4, if necessary).
Also, x is a positive real. As rm ∈ Q, we can write it as a/b, with a, b ∈
Z and b positive. Thus, by the definition of exponentiation with a rational
exponent (§3), we have (xqn)rm = b

√
(xqn)a. If we set f(x) = b

√
xa, then

(xqn)rm = f(xqn). Now f is differentiable—and thus continuous—at any
x ∈ R+, and so:

lim
n→∞(xqn)rm = lim

n→∞ f(xqn) = f
(
lim
n→∞ xqn

)
=

(
lim
n→∞ xqn

)rm

Notes
1. See https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero

(accessed March 23, 2023).
2. As an example, consider that (−2)2 = 22, but −2 ̸= 2.
3. Note that this means that the fifth equality also follows from the stronger form of

property 2.
4. The commas around the word “converge” are because this sequence of rationals

need not converge to a rational number—so, strictly speaking, it can be a divergent se-
quence in the rationals. But it always converges to some real number.
5. I have a forthcoming manuscript wherein an explicit construction of the reals is

presented. In it, I also prove this statement (among several others of similar nature). I
will update this paper with the reference once it is ready.
6. M cannot be negative, because the absolute value is always non-negative.

https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero
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