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Abstract. This paper bridges the gap between the “geometric defini-
tions” of sine and cosine, based on (tri)angles and/or the trigonometric
circle, and what is usually presented in, e.g., undergraduate mathemat-
ics as their rigorous definitions, based on Taylor polynomials and/or the
exponential function.
Prerequisites. The reader is expected to be comfortable with topics
usually taught in freshman calculus courses, viz., sequences, (one vari-
able) functions, and taking limits of both, continuity, differentiation and
power/Taylor series.
Keywords: trigonometry, sine, cosine, differentiation, Taylor series.

1 Introduction
Most people learn trigonometry in the context of geometry: angles and
triangles, and the trigonometric circle, and define sine and cosine using
these concepts. The problem with this approach, is that it is not rigorous.
Conversely, rigorous analytical definitions of these functions are often
anything but intuitive: typically, one either starts from the fact that for
sin and cos, we have f ′′ = −f, and then derives their Taylor expansion,
which is then used as the definition sin and cos; or one first defines the
complex exponential function, and then defines sine and cosine in terms
of that exponential.1 The problem is that it is then well-nigh impossible
to see how the sine and cosine functions defined in this manner coincide
with their geometrical counterparts. To be sure, one can prove that these
analytical definitions have some of the same properties as the geometri-
cal sine and cosine,2 but this does not prove that the analytically defined
functions actually describe the original geometrical “reality.”

Such a proof is not easily found on the literature—I could only find a
proof sketch from Spivak, cf. the “Credits” paragraph, below—and hence
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I purport to provide one here. I shall stick with sin and cos only, because
all other trigonometric functions can be derived from them.
Strategy. We will begin by defining the cosine function, in a manner
that agrees with our geometric understanding of that function, but made
rigorous by the use of the integral. This will be done, at first, for angles
on a limited interval, but the definition will then be broadened to any real
number. Having defined cosine, defining sine from it is straightforward.
These functions will then be proved to be continuous, and indefinitely
differentiable. This will be §2.

After that is done, we will leverage sin ′ and cos ′ to derive the Taylor
series for each function. This will show that the formulae that in calculus
courses is usually taken to be the definition of sine and cosine, do indeed
coincide with the “geometric sine” and “geometric cosine” that one usu-
ally learns in high-school trigonometry. This will be §3.

Following that, we will derive, taking the Taylor polynomials as the
starting point, both some expected properties—e.g., sin2 x+ cos2 x = 1—
as well as some well-known formulas, such as the sine and cosine of sums,
without any appeal to geometric intuition. This section, §4, will end with
an analysis of the periodicity of the sine and cosine functions.

The paper concludes with (one way of) formally defining the number
π, in §5. In the appendices, first we relate the trigonometric circle to tri-
angles (§A), followed by some brief generalities about periodic functions
(§B; some of the results here justify the computations done at the end of
§4), and after that, the proofs for some theorems used (without proof)
throughout the text are given (§C).
Credits. The idea of defining cosine in terms of the integral is largely
drawn from Spivak [3, §15], although we provide some of the details
absent therein. The presentation of the Taylor polynomials takes some
inspiration from Sarrico [2, §9].

2 From Geometry To Formal Definitions
We will start with cosine, because once that is defined, it is trivial to de-
fine sine from it. The idea is to go from thinking of cosine as a function
that applies to an angle, to thinking of it as a function that applies to
an arbitrary real number. So starting with angles, if one measures them
counter-clockwise3 from the positive semi-axis of the abscissae, then one
can identity the amplitude of an angle with the corresponding length of
the arc of the unit circumference delimited by that angle—which is, of
course, how one defines radians. In particular, as the whole unit circum-
ference has length 2π, it corresponds to an amplitude of 2π radians. Also,
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Figure 1: Sine and cosine on the trigonometric circle. Note that y =
√
1− x2.

when the sector is the entire unit circle, its area is π, i.e., half of the length
of the corresponding arc (the entire unit circumference).

Accordingly, given an angle θ as in figure 1, the corresponding arc
has length θ (in blue), and the corresponding sector (purple-ish shade) has
area θ/2. The reader likely learned that cos θ and sin θ are defined in such
a way as to make (cos θ, sin θ) be the coordinates of point P (in the same
figure)—i.e., (x, y) = (cos θ, sin θ). Towards a more formal approach,
begin by observing that, for any x in [−1, 1], there exists one, and only
one point P that lies on the upper unit circle, and has x as its abscissae
coordinate—namely, P = (x,

√
1− x2). Thus, if we had a continuous,

bijective function L : [−1, 1]→ [0, π], such that L(x) is the length of the
arc PR as depicted in figure 1, we could define cos θ as the only value x
such that L(x) = θ (for θ ∈ [0, π]). This requires integration, but one
usually learns it by reasoning over areas, rather than lengths. Thus, we
will instead construct a (continuous and bijective) functionA : [−1, 1]→
[0, π/2], such that A(x) expresses the area of the sector corresponding to
the arc PR (i.e., the “slice” corresponding to angle PÔR in figure 1) in
terms of x—and then, cos θ will be the only x such that A(x) = θ/2.
This, as mentioned, is only valid for θ ∈ [0, π]. However, throughout the
current section, this restriction will be gradually removed, so that in the
end we will have cosine (and sine) defined for any arbitrary real value.

We define function A as follows:

A(x) =
x
√
1− x2

2
+

∫ 1
x

√
1− t2dt (2.1)

To see that it indeed computes the desired area, observe that the left parcel
computes the area of right triangle PQO in figure 1, and the integral
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Figure 2: When x is negative.

computes the remaining area of that sector, that is “above” line segment
QR. Observe that this formula also holds for negative values of x (i.e.,
when θ > π/2), because then the left parcel is negative, and corresponds
exactly to the area that has to be subtracted from the integral to obtain the
area of the unit circle sector—cf. the triangle PQO in figure 2.

To show that it is a bijection, we begin by showing it is continuous in
[−1, 1]. Continuity inside the interval is shown by differentiation (in fact,
the derivative is only defined for x ∈ ]−1, 1[, because the derivative4
of √x is not defined at x = 0—hence, that of

√
1− x2 is not defined

for x = ±1). Using the usual differentiation rules, together with the
Fundamental Theorem of Calculus, we have:

A ′(x) =
1

2

(
x · −2x

2
√
1− x2

+
√

1− x2
)
−
√

1− x2

=
1

2

(
−x2 + (1− x2)√

1− x2

)
−
√

1− x2

=
1− 2x2

2
√
1− x2

−
√
1− x2

=
1− 2x2 − 2(1− x2)

2
√
1− x2

=
−1

2
√
1− x2

(2.2)

From a well-known theorem in calculus, the fact that A is differentiable
in ]−1, 1[ means it is also continuous on that interval5—but we can also
prove continuity at the extremes. Recall that by the Fundamental The-
orem Calculus, we know that the integral in the definition of A (2.1) is
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continuous in [−1, 1]. We have:

lim
x→−1

A(x) = lim
x→−1

x
√
1− x2

2
+ lim

x→−1

∫ 1
x

√
1− t2dt

= 0+

∫ 1
−1

√
1− t2dt = π/2 = A(−1)

Similarly, one shows that limx→1A(x) = 0 = A(1). Thus, A is continu-
ous in [−1, 1].

That A is bijective follows from the fact that it is strictly decreasing:
the denominator of the derivative—2

√
1− x2—is always positive, which

means the derivative is always negative. Hence, the function A is strictly
decreasing in ]−1, 1[. As it is continuous in [−1, 1], this meansA (strictly)
decreases from A(−1) = π/2 to A(1) = 0. Thus, we can define the
inverse function,A−1 : [0, π/2]→ [−1, 1], which the next theorem shows
will also be a continuous and strictly decreasing bijection:
Theorem 2.3 (Continuity of the inverse). Let a, b ∈ R be two reals,
with a < b, and let f : [a, b] → R be a continuous and strictly decreasing
function. Then f is a bijection from [a, b] to [f(b), f(a)], and its inverse, f−1

is also strictly decreasing, and continuous.
Proof. See page 19 in appendix C. ■

Defining the cosine of an angle θ to be the value x such that A(x) =
θ/2, is now proper: it just means that cos θ = A−1(θ/2).
Definition 2.4. Let θ ∈ [0, π]. cos θ is the (unique) value a ∈ [−1, 1] such
that A(a) = θ/2. And sin θ def

=
√
1− cos2 θ.

Remark 2.5. After reading definition 2.4, the reader may wonder why
we don’t define cos θ simply as A−1(θ/2). The reason is because we do
not have an explicit formula for A−1—and so, to be able to compute the
cosine of given angles using the definition (see below), we rely on function
A, for which we have an explicit formula, viz. (2.1). △
Remark 2.6. Because A is a bijection from [−1, 1] to [0, π/2], given any
t ∈ [−1, 1], there is one, and only one θ ∈ [0, π] such that cos θ = t—
namely, θ = 2A(t). △
Remark 2.7. Definition 2.4 already allows us to think of cosine and sine
as functions which take as an argument not an angle, but a real number.
However, to avoid confusion with the Cartesian coordinates x and y, in
this section we shall continue to use Greek letters for the argument of sin
and cos—dropping this practice only on the next section, §3. △
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Extending sin and cos from [0, π] to R. We first extend them to [π, 2π].
If θ ∈ [π, 2π], then by sheer arithmetic we have −θ ∈ [−2π,−π]—and
thus (2π − θ) ∈ [0, π]. Moreover, if θ ∈ [π, 2π], then we can write
θ = π+θ ′, where θ ′ ∈ [0, π]. Then, we have 2π−θ = 2π−(π+θ ′) =
π − θ ′. Going back momentarily to thinking about sines and cosines
as Cartesian coordinates of a point one the unit circle, we expect that
cos(π+θ ′) = cos(π−θ ′) and sin(π+θ ′) = − sin(π−θ ′)—cf. figure 3.

Hence, for θ ∈ [π, 2π] and θ ′ ∈ [0, π], we have:{
cos θ = cos(π+ θ ′) = cos(π− θ ′) = cos(2π− θ)

sin θ = sin(π+ θ ′) = − sin(π− θ ′) = − sin(2π− θ)

And thus we can define, for θ ∈ [π, 2π]:{
cos θ def

= cos (2π− θ)

sin θ def
= − sin (2π− θ)

(2.8)

This takes care of sin and cos for values in [0, 2π]. Note that it is of no
importance that the intervals overlap on point π, because when θ = π,
θ = 2π− θ.
Remark 2.9. We can recast the definition of cos θ for θ ∈ [π, 2π] using
the A function, a la definition 2.4: cos θ is the unique value a ∈ [−1, 1]
such that A(a) = (2π− θ)/2. This is because 2π− θ is a bijection from
[π, 2π] to [0, π].

And remark 2.6 can be similarly updated: given any t ∈ [−1, 1],
there is one, and only one θ ∈ [π, 2π] such that cosθ = t—namely,
θ = 2π − 2A(t). This is because as A is a bijection (from [−1, 1] to
[0, π/2]), then 2π−2A(x) is also a bijection (from [−1, 1] to [π, 2π]). △

To extend sine and cosine from [0, 2π] to all of R is easy:{
cos(θ+ 2kπ)

def
= cos θ

sin(θ+ 2kπ)
def
= sin θ (2.10)

for θ ∈ [0, 2π[ and k ∈ Z. This effectively replicates the behaviour of
sin and cos in [0, 2π[, to all of R. Why do we exclude the possibility of
having θ = 2π? For two reasons. First, (2.10) would not work if, for
example, cos 0 ̸= cos 2π: indeed, we could set θ = 2π and obtain, with
k = −1, cos(2π + 2(−1)π) = cos 2π ⇔ cos 0 = cos 2π, which would
be contradictory. However, we do have cos 0 = cos 2π—and indeed, the
same holds for sine (see below)—which means we could allow setting
θ = 2π. The reason we don’t, is the following: given any γ ∈ R, we
can write it as θ + 2π⌊γ/2π⌋, with θ ∈ [0, 2π[ and k = ⌊γ/2π⌋, and
this decomposition is unique.6 However, if we could set θ = 2π, then any
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Figure 3: Given θ ′ ∈ [0, π], we depict the sine and cosine of π− θ ′ and π+ θ ′. In the
specific case depicted, θ ′ ∈ [0, π/2]. In the case of θ ′ ∈ [π/2, π], the line segment PQ
would intersect the abscissae axis on a point to the right of the origin O.

γ = 2πs, with s an integer, could be written either setting θ = 0 and
k = s, or θ = 2π and k = s− 1. This redundancy is inelegant, and thus
we disallow setting θ = 2π.

In light of the above, to compute, say, sinγ, we simply write γ =
θ+ 2π⌊γ/2π⌋ as above—from whence, per (2.10), follows sinγ = sin θ.
Some “standard” values of sin and cos. We will now illustrate comput-
ing values of sine and cosine, from their formal definitions.7 To compute
cos 0, we require a value x ∈ [−1, 1] such that A(x) = 0/2 = 0. As (2.1)
makes clear, A(1) = 0—which means cos 0 = 1. For cos 2π, by (2.8) we
have cos 2π = cos(2π − 2π) = cos 0 = 1. Conversely, when we restrict
ourselves to interval [0, π], by remark 2.6 cos θ = 1⇔ θ = 2×A(1) =
2 × 0 ⇔ θ = 0. Now suppose θ ∈ [π, 2π]. By remark 2.9 we have
cos θ = 1 ⇔ θ = 2π − 2A(1) = 2π − 0 = 2π. Thus, we have shown
that for θ ∈ [0, 2π], cos θ = 1 if and only if θ = 0∨ θ = 2π.

Next, for cosπ/2, we search an x ∈ [−1, 1] such thatA(x) = (π/2)/2 =
π/4—and x = 0 fits the bill, which means cosπ/2 = 0. For cos 3π/2,
via (2.8) comes cos 3π/2 = cos(2π− 3π/2) = cosπ/2 = 0. Conversely,
cos θ = 0 ⇔ θ = 2A(0) = π/2, in [0, π]. And for θ ∈ [π, 2π], we
have θ = 2π− 2A(0) = 2π− π/2 = 3π/2. All of which shows that for
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θ ∈ [0, 2π], cos θ = 0⇔ θ = π/2∨ θ = 3π/2.
Now for sine, it follows easily that sin 0 =

√
1− cos2 0 =

√
1− (1)2 =

0. For sinπ, just as we showed above that in [0, 2π], cos θ = 1 if and only
if θ = 0∨θ = 2π, and via a similar reasoning one shows that cos θ = −1

if and only if θ = π. And then sinπ =
√
1− cos2 π =

√
1− (−1)2 = 0.

For sin 2π comes sin 2π = sin(2π − 2π) = sin 0 = 0. Conversely,
we want to solve sin θ = 0. For θ ∈ [0, π], we have sin θ = 0 ⇔√
1− cos2 θ = 0 ⇔ cos2 θ = 1 ⇔ cos θ = 1 ∨ cos θ = −1. By our

results above for cosine, this means that θ = 0∨ θ = π. For θ ∈ [π, 2π],
we have sin θ = 0 ⇔ − sin(2π − θ) = 0 ⇔ √

1− cos2(2π− θ) =
0 ⇔ cos(2π − θ) = 1 ∨ cos(2π − θ) = −1. As θ ∈ [π, 2π] ⇔
(2π − θ) ∈ [0, π], by the same above results for cosine, this means that
2π−θ = 0∨2π−θ = π⇔ θ = 2π∨θ = π. Combining all this, we con-
clude that for θ ∈ [0, 2π], sin θ = 0 if and only if θ = 0∨θ = π∨θ = 2π.

Next, we take sinπ/2, which by definition is
√

1− cos2(π/2) =√
1− 0 = 1. Conversely, sin θ = 1 ⇔ √

1− cos2 θ = 1 ⇔ cos2 θ =
0 ⇔ cos θ = 0, which as we saw above, has only one solution in [0, π],
namely θ = π/2. For interval θ ∈ [π, 2π], we have sin θ = 1 ⇔
− sin(2π − θ) = 1⇔ sin(2π − θ) = −1⇔ √

1− cos2(2π− θ) = −1,
which is impossible—meaning there is no θ ∈ [π, 2π], such that sin θ = 1.
Thus, we conclude that for θ ∈ [0, 2π], sin θ = 1 if and only if θ = π/2.

Finally, we take sin 3π/2, which by (2.8) is equal to− sin(2π−3π/2) =
− sinπ/2 = −1. Conversely, sin θ = −1 ⇔ √

1− cos2 θ = −1, which
is impossible—meaning there is no θ ∈ [0, π], such that sin θ = −1. For
interval [π, 2π] however, we have sin θ = −1⇔ − sin(2π−θ) = −1⇔
sin(2π− θ) = 1⇔ 2π− θ = π/2⇔ θ = 3π/2. Thus, we conclude that
for θ ∈ [0, 2π], sin θ = −1 if and only if θ = 3π/2.
Graphs of sin and cos. Having the sine and cosine functions rigorously
defined for all of R means we are able to plot them—see figure 4. (Antici-
pating the stipulated in remark 2.7, we now temporarily drop the practice
of using Greek letters for the arguments of sin and cos—because labeling
an abscissae axis θ, is more than a bit non-standard.)

One thing that might be suggested by this depiction, especially if one
focuses on the domain interval [−π, π], is that cosine appears to be an
even function—i.e., cos x = cos(−x)—and sine appears to be an odd
function—sin x = − sin x. This is indeed so, for any real x, and we
prove it as follows. Write x as y + 2π⌊x/2π⌋, with y ∈ [0, 2π[8—
from whence, cos x = cosy and sin x = siny. Multiplying both sides
by −1 yields x = y + 2π⌊x/2π⌋ ⇔ −x = −y − 2π⌊x/2π⌋, with
−y ∈ ]−2π, 0]. Adding and subtracting 2π to the right hand side, we
obtain −x = (2π − y) + 2π(−⌊x/2π⌋ − 1). As 2π − y ∈ [0, 2π[, by
(2.8), we have cos(−x) = cosy, and sin(−x) = − siny—and it is now
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Figure 4: The sine and cosine functions.

straightforward that cos x = cos(−x) and sin(−x) = − sin x.
But the most obvious thing suggested by the graphics of sine and co-

sine, is that the way in which we extended both functions to R, yields
continuous functions over all of R. We next tackle the task of proving this
rigorously.
Continuity of sin and cos. We have cos θ = A−1(θ/2), where A−1 is
a continuous bijection and θ ∈ [0, π]. Hence, for α ∈ [0, π], we have:
limθ→α cos θ = limθ→αA

−1(θ/2) = A−1(α/2) = cosα.
The continuity of sine is now immediate, because given α as above,

we have:

lim
θ→α

sin θ = lim
θ→α

√
1− cos2 θ =

√
1−

(
lim
θ→α

cos θ
)2

=
√

1− cos2 α

= sinα

This shows that sine and cosine are continuous on [0, π]. From this and
(2.8), it then follows that sin and cos are also continuous in [π, 2π]. Thus,
in [0, 2π] the only possible point of discontinuity is at θ = π. We have
limθ→π− cos θ = cosπ = −1, and limθ→π+ cos θ = limθ→π+ cos(2π −
θ) = limθ→π− cos θ = cosπ = −1—thus the cosine function is continu-
ous at θ = π, and so it is continuous on [0, 2π]. For sine, the reasoning is
analogous.

Similarly, when extending sin and cos from [0, 2π] to R, the only
possible points of discontinuity would be at θ = 2πk, with k ∈ Z. Fix a
value for k; to compute the lateral limits around θ = 2πk, first note that
on intervals [2π(k− 1), 2πk] and [2πk, 2π(k+ 1)], both sin and cos take
the same values as they do in [0, 2π]—this is an immediate consequence
of (2.10). And so, it follows that limθ→2πk− sin θ = limθ→2π− sin θ =
sin 2π = 0 = sin 2πk, and limθ→2πk+ sin θ = limθ→0+ sin θ = sin 0 =
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0 = sin 2πk. For cosine, the reasoning is similar—allowing us to conclude
that both sine and cosine are continuous over all of R.
Derivatives of sin and cos. We now come to the final task in this section,
computing the derivatives of sine and cosine; we begin with the latter.
Again we have cos θ = A−1(θ/2), where θ is restricted to [0, π], andA−1

is a continuous bijection. Keeping in mind that A ′(x) is defined only for
x ∈ ]−1, 1[ (cf. the discussion surrounding (2.2)), and so the Derivative
Of Inverse Rule can only be applied to θ ∈ ]0, π[, we use it, together with
the Chain Rule, to obtain:

cos ′ θ =
(
A−1(θ/2)

) ′
= (A−1) ′(θ/2) · (1/2) = 1

A ′
[
A−1(θ/2)

] · 1
2

=
1

A ′(cos θ) ·
1

2
= −

√
1− cos2 θ = − sin θ

As for the derivative of the sine function, we have:

sin ′ θ =
(√

1− cos2 θ) ′ = 1

2

−2 cos θ cos ′ θ√
1− cos2 θ

=
cos θ sin θ

sin θ = cos θ

Let us now extend these differentiation rules to values θ ∈ ]π, 2π[. Taking
(2.8) into account, we have:

• For sin: sin ′ θ = − sin ′(2π− θ) = − cos(2π− θ)× (−1) = cos(2π−
θ) = cos θ.

• For cos: cos ′ θ = cos ′(2π−θ) = − sin(2π−θ)×(−1) = sin(2π−θ) =
− sin θ.

So, for θ ∈ ]0, 2π[ \ {π}, we have sin ′ = cos and cos ′ = − sin ′. Now,
for any θ ∈ R, except multiples of π, we saw above when discussing
(2.10) that we can write θ = γ + 2π⌊θ/2π⌋, with γ ∈ [0, 2π[. As
θ ̸= kπ, for any integer k, this means γ ∈ ]0, 2π[\ {π}. Hence, according
to what we just proved, we have sin ′ γ = cosγ and cos ′ γ = − sin ′ γ.
Now let t = 2π⌊θ/2π⌋. Similarly to what we observed above when
discussing continuity, as t is a multiple of 2π, it is a direct consequence
of (2.10) that cos takes the same value in ]t, 2π+ t[ \ {π+ t} as it takes
in ]0, 2π[ \ {π}—and the same is true for sin. Hence, if cos (resp. sin)
is differentiable at a point x ∈ ]0, 2π[ \ {π}, then cos (resp. sin) is also
differentiable at point x + t ∈ ]t, 2π + t[ \ {π+ t}—and moreover cos ′
(resp. sin ′) has the same value at both points. But if x = γ, then x + t

is just θ, from whence we conclude that sin ′ θ = sin ′ γ = cosγ = cos θ
and cos ′ θ = cos ′ γ = − sinγ = − sin θ.

This just leaves the multiples of π, for which we require the following
theorem:
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Theorem 2.11 (Limit of the derivative). Let X be a subset of R and a an
interior point of X, and f : X → R a function continuous in X and differen-
tiable in X \ {a}, but such that limx→a f

′(x) = l. Then f ′(a) = l.
Proof. See page 20 in appendix C. ■

Now letX be a nonempty interval, such that the only multiple ofπ that
is contained in X, is π itself. Consider the sine function: it is continuous in
X, and for all θ ∈ X\{π}, we have sin ′ θ = cos θ. But cosine is continuous
over all R, which means in particular that limθ→π cos θ = cosπ = −1.
Theorem 2.11 now immediately gives sin ′ π = −1 = cosπ. The same
reasoning can be done for anymultiple ofπ, which shows the sine function
is differentiable over all R—and its derivative is cosine. The reasoning is
analogous to show that cos ′(kπ) = − sin(kπ) (k ∈ Z).

Thus, we have shown that for any θ ∈ R, we have sin ′ = cos and
cos ′ = − sin ′.

3 Taylor Series Of Sine And Cosine
In this section we derive the expressions of both functions in terms of the
so-called Taylor series (see below). We leverage the fact that both sine
cosine are solutions for the differential equation f ′′ = −f, f : R → R—
indeed, we would expect for any linear combination of sines and cosines to
be a solution: (a cos x+b sin x) ′′ = (−a sin x+b cos x) ′ = −(a cos x+
b sin x). But this says nothing about whether any other solutions exist, so
we proceed with a more generic approach. We shall require the values
of cosine and sine at 0, which we have computed in the previous section:
cos 0 = 1 and sin 0 = 0.

The first observation is that any solution f has derivatives of any or-
der, over all of its domain: indeed, f(0) = f, f(1) = f ′, f(2) = f ′′ = −f,
f(3) = −f ′, f(4) = −f ′′ = −(−f) = f = f(0), and the cycle repeats indef-
initely. Furthermore, f is continuous over all of R, because its derivative
is defined over all of R. The same reasoning shows that f(n) is also con-
tinuous on R, not just for n = 0 (which is f), but for any other n ≥ 1 as
well. In particular, f ′ is continuous on R. Which entails that, if we take
any ε > 0, and consider the interval [−ε, ε], both f and f ′ are bounded
on that interval.

We now enlist some “big guns” of mathematical analysis, namely Tay-
lor polynomials with so-called Lagrange remainder. We have the follow-
ing theorem.
Proposition 3.1. Letn ≥ 0 be an integer,X an interval of R, and f : X→ R

a function with continuous derivatives in X, up order n+1, and x0 an interior
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point of X. Then for any x ∈ X, there exists c strictly between x0 and x, such
that:

f(x) = f(x0) + f ′(x0)(x− x0) +
f(2)(x0)

2!
(x− x0)

2 + . . .

+
f(n)(x0)

n!
(x− x0)

n +
f(n+1)(c)

(n+ 1)!
(x− x0)

n+1

Proof. This is a restatement, in a different form, of Theorem 4 (Taylor’s
theorem) in Spivak [3, §19]—to which the reader is referred to for a proof.

■

The series∑n
i=0

(
f(i)(x0)(x−x0)

i
)
/i! is called Taylor polynomial of

degree n, and is usually denoted by Sn(x). When n → +∞, we obtain
the Taylor series. It is immediate that:

f(n+1)(c)

(n+ 1)!
(x− x0)

n+1 = f(x) − Sn(x)

The left hand side is called the Lagrange form of the Taylor remainder.
And we can now prove the result that we actually need.
Proposition 3.2. If there exists k ≥ 0 such that for any n ≥ 0 we have∣∣f(n)(x)∣∣ ≤ k for all x in a neighbourhood9 of x0, then f(x) equals its Taylor
series for any x in that neighbourhood.
Proof. See page 21 in appendix C. ■

Now, returning to our reasoning where we left off, letm = max[−ε,ε]|f(x)|
andm ′ = max[−ε,ε]|f ′(x)|. Thus forM = max {m,m ′}, we have

∣∣f(n)(x)∣∣ ≤
M, for all n ≥ 0 and x ∈ [−ε, ε]. Hence f(n) is also bounded on the in-
terval ]−ε, ε[, which is a neighbourhood of x = 0, and making k = M,
we can apply proposition 3.2 to conclude that any such function must
coincide with its Taylor series on point x = 0. I.e., we must have:

f(x) = f(0) + f ′(0)x+
f(2)(0)

2!
x2 +

f(3)(0)

3!
x3 +

f(4)(0)

4!
x4 + . . .

But because of the relation between derivatives of different orders we saw
above, we can rewrite this as:

f(x) = f(0) + f ′(0)x−
f(0)

2!
x2 −

f ′(0)

3!
x3 +

f(0)

4!
x4 +

f ′(0)

5!
x5 + . . .

If we separately group terms with even and odd exponents, we obtain:
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f(x) =

+∞∑
n=0

(
(−1)nf(0)

x2n

(2n)!
+ (−1)nf ′(0)

x2n+1

(2n+ 1)!

)
We can further split the summation like this:

f(x) = f(0)

+∞∑
n=0

(
(−1)n

x2n

(2n)!

)
+ f ′(0)

+∞∑
n=0

(
(−1)n

x2n+1

(2n+ 1)!

)
(3.3)

This equality holds for x ∈ ]−ε, ε[, but as ε was arbitrarily chosen, it
holds for any x ∈ R. All of which shows that any function f that is a
solution for f ′′ = −f, can be written in the form (3.3). But note the
following: we know that one such solution is f(x) = a cos x + b sin x,
where a, b are arbitrary values, and moreover, f(0) = a and f ′(0) = b.
Contrasting this with (3.3), we conclude that the cosine function can be
written as the left hand side summation, and that the sine function can
be written as the right hand side summation.10 From this it also follows
that all solutions to f ′′ = −f are of the form f(x) = a cos x+b sin x. The
next result is now immediate.
Proposition 3.4. The Taylor expansions of cosine and sine are:

cos x =

+∞∑
n=0

(
(−1)n

x2n

(2n)!

)
and sin x =

+∞∑
n=0

(
(−1)n

x2n+1

(2n+ 1)!

)
It is thus shown that the Taylor expansions of sine and cosine—often used,
in analysis courses, as the rigorous definitions of sine and cosine—do indeed
correspond to the “geometrical” sine and cosine one usually learns in high-
school trigonometry.11

4 Some Properties of Sine And Cosine
We have (cos2 x + sin2 x) ′ = 2 sin x cos x − 2 cos x sin x = 0, meaning
that cos2 x + sin2 x is a constant function; and as cos2 0 + sin2 0 = 1, we
conclude cos2 x+ sin2 x = 1, for all x ∈ R.

The well-known formulae for the sine and cosine of sums are also easy
to derive. Letting c be a fixed value, we have sin ′(x + c) = cos(x + c)
and cos ′(x + c) = − sin(x + c), which means f(x) = sin(x + c) is
also a solution of f ′′ = −f—and hence, it can be written as f(0) cos x +
f ′(0) sin x, from where we conclude that for any x, c ∈ R, we have:

sin(x+ c) = sin x cos c+ cos x sin c
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Differentiating both sides we obtain:

cos(x+ c) = cos x cos c− sin x sin c

Note that, even though they were deduced by fixing one of the parcels,
these formulae apply to any two real numbers.

Recall that we computed in §2 that cosπ = −1 and sinπ = 0. To-
gether with the above formulas for sines and cosines of sums, this yields:

sin(x+ π) = sin x cosπ+ cos x sinπ = − sin x
cos(x+ π) = cos x cosπ− sin x sinπ = − cos x (4.1)

This coincides with the intuition that arises from the “sine and cosine as
Cartesian coordinates” approach depicted in figure 3. And this affords us
another way to show that both sine and cosine have period 2π:12

sin(x+ 2π) = sin((x+ π) + π) = − sin(x+ π) = −(− sin x) = sin x
cos(x+ 2π) = cos((x+ π) + π) = − cos(x+ π) = −(− cos x) = cos x

But we can go beyond this, and show that 2π is the smallest positive (i.e.,
the fundamental) period. To do this, we rely on the fact that if T is the
fundamental period of f, then for all other T ′ such that f(x+ T ′) = f(x),
we have T ′ = kT , for some (possibly negative) integer k.13 Now, we
know that 2π is a period of sin and cos, thus the fundamental period, if
different from 2π, must be a divisor of 2π—that is to say, it must be of
the form 2π/n, with n > 1 an integer. However, from (4.1), we know π

is not a period of either function, and so we must actually have n > 2.
Let us tackle sine first, by supposing we have sin(x+ 2π/n) = sin x. But
for x = 0, this would entail sin(2π/n) = sin 0 = 0, which we showed
above—cf. §2—to be possible only for n = 1 or n = 2, and we have
already established that we must have n > 2. Thus, no real of the form
2π/n, with n > 2 an integer, can be a period of sin—which means 2π is
its smallest period. Now for cosine, suppose we have cos(x + 2π/n) =
cos x. Again for x = 0, this entails cos(2π/n) = cos 0 = 1, which we
have also shown (ibid.) to be only possible if n = 1. Hence, no real of
the form 2π/n, with n > 2 an integer, can be a period of cos—which
again means 2π is its smallest period.

5 Conclusion: A Discussion Of π
The main goal of this text—to establish the equivalence between geomet-
ric and analytical definitions of sine and cosine—has been accomplished.
But I thought to end this writing with a note on π: in §2 we implicitly rely
on the fact that for a circle of radius r, its perimeter is given by 2πr, and its
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area by πr2. We then use this to determine the derivatives of sin and cos,
and use these to, in §3, derive the Taylor polynomials for both functions.
However, in the literature, when defining sin and cos in terms of Taylor
polynomials, it is also customary to define π in terms of these functions.14
That approach obviously does not work for us, because we have defined
both cos and sin taking for granted that π was already defined.

Actually, that is not strictly true—what we relied on, was the fact that
the ratio between the perimeter of a circle, and its diameter, is constant
(i.e., it is a finite real number), for any circle. This cannot be proved—it
has to be taken as an axiom of Euclidean geometry.15 If we denote that
constant finite real number by π, it is immediate that the perimeter of
a circle of radius r is 2πr. And furthermore, that its area is πr2 can be
shown by computing the following integral: ∫r

0
2π t dt = 2π

∫r
0
t dt =

2π(r2/2− 0) = πr2. Essentially, we “add up” the perimeters of all inner
circles, for all radii from 0 to r. This suffices for the reasoning carried out
in §2—but it does not help one to compute the actual value of π, because
we haven’t really defined it.

So, how to actually define π? There are many possibilities, but one
that relates to the work done in §2, is to define π as twice the area under
the upper unit circumference—which can be computed as ∫1−1

√
1− t2dt.

That is, we set π def
= 2
∫1
−1

√
1− t2dt.

A Sine, cosine and triangles
Take any right triangle: it is well-known from Euclidean geometry that
we can always obtain an equivalent triangle, by dividing the length of all
sides by the length of the hypotenuse, thus obtaining a similar triangle
with equal angles to the original one, and a length 1 hypotenuse. Let
this new triangle be the one depicted in figure 5a. It can be inscribed
in the trigonometric circle, by placing the hypotenuse (line segment AB)
“on top” of line segment OP in figures 1 and 2. There are two ways of
accomplishing this. One is to have line segment AC lay on top of the
positive abscissae semi-axis (having point A coincide with point O of
figures 1 and 2): from which we immediately conclude that cosα = AC

and sinα = BC. The other is to have line segment BC lay on top of
the positive abscissae semi-axis (having point B coincide with point O of
figures 1 and 2): from which we immediately conclude that cosβ = BC

and sinβ = AC. This shows that our functions of sine and cosine also
apply to (right) triangles: indeed, we can look at the trigonometric circle
as a generalization of right-triangle trigonometry, where one learns that
cosine (resp. sine) of an angle is the ratio between the length of the side
adjacent (resp. opposite) to that angle, and the hypotenuse.



§B – Generalities on periodic functions 16

A
C

B

α

β

(a) Right triangle.

A C

B

1

1

1/2

1/2

√
3/2

α

β

B′

(b) Equilateral triangle.

Figure 5: Triangles and trigonometry.

However, this “particularization” of trigonometry—i.e., going from
the trigonometric circle to right-triangles—does allow us to compute the
cosine and sine for some more concrete values, in addition to what was
done in §2. For example, ifAC andBC have the same length, thenα = β,
and as all the internal angles of any triangle always add to π, we must
have α = β = π/4. Furthermore, as AB has length 1, by Pythagoras’
theorem, the length of both AC and BC must be

√
2/2. Which means

that cosπ/4 = sinπ/4 =
√
2/2.

But in figure 5a, the sides AC and BC do not have the same length—
in fact, the length of BC is half of that of AC. This is to allow us to build
an equilateral triangle, by “doubling” our existing triangle—cf. figure 5b.

Now, as the all the sides of the equilateral triangle ABB ′ have the
same length, so will all the angles be equal—and as the total must sum to
π, this means that each angle will have an amplitude of π/3 radians; in
particular, we will have β = π/3. But as the length of B ′C is equal to
that of BC, this means the amplitude of CÂB ′ is α—or equivalently, the
amplitude BÂB ′ is 2α. As BÂB ′ = π/3, α = π/6. As for side length,
if AB has length 1, and BC has half of that (1/2), then by Pythagoras’
theorem, the length of AC is

√
3/2. It is now immediate that sinπ/6 =

cosπ/3 = 1/2 and sinπ/3 = cosπ/6 =
√
3/2.

B Generalities on periodic functions
A function f : R → R is said to be periodic, with period T , if there exists a
positive real T such that, for any x in the domain of f, we have f(x+T) =
f(x). The period is not unique: it is easy to see that for every integer n
(including negatives) we have f(x+nT) = f(x). Indeed, letting x = x+T

in f(x+T) = f(x), yields f(x+T+T) = f(x+T)⇔ f(x+2T) = f(x+T),
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from whence f(x+2T) = f(x). A simple induction argument then shows
that we have f(x + nT) = f(x), for any integer n ≥ 1 (the case n = 0

is trivial). Now if set y = x + nT , this means x = y − nT , and thus
replacing above, we obtain f(y − nT) = f(y). As x is arbitrary, so is y,
establishing that if f(x+ T) = f(x), then also f(x+nT) = f(x), for any
integer n.16

Conversely, if T is the smallest (positive) period of f—i.e., T is the
fundamental period—then for all other T ′ such that f(x + T ′) = f(x),
we have T ′ = kT , for some (possibly negative) integer k. To see this,
suppose that there existed a T ′ such that f(x + T ′) = f(x) and T ′ was
not an integer multiple of T—and let us first suppose T ′ is positive. As by
assumption T ′ is not the fundamental period, this means T ′ > T . If we set
n = ⌊T ′/T⌋, then nT is such that 0 < T ′ − nT < T . We showed above
that nT is also a period of f, and hence we would have f(x+nT) = f(x)
and f(x+T ′) = f(x), which of course means f(x+nT) = f(x+T ′). But
T ′ = nT +(T ′−nT), which means f(x+nT) = f(x+nT +(T ′−nT)),
or writing y = x + nT , f(y) = f(y + (T ′ − nT))—and as T ′ − nT

is non-negative, it is also a period of f. But T ′ − nT is smaller than T ,
which contradicts the fact that T is the smallest period of f. Thus T ′

cannot be positive—so now let it be negative. If we had T ′ > −T , this
would mean −T ′ < T , and if T ′ is negative, then −T ′ is positive, which
would mean that T was not the fundamental period, which is absurd.
So we must have T ′ < −T ⇔ −T ′ > T . As shown in the previous
paragraph, from f(x+ T ′) = f(x) follows that f(x+ (−T ′)) = f(x), i.e.,
−T ′ is a period of f, greater than T . Moreover, if T ′ is not an integer
multiple of T , then neither is −T ′. But by the same reasoning as above,
we reach the conclusion that −T ′−⌊−T ′/T⌋T must also be a period of f.
Which again contradicts the fact that T is the fundamental period, because
0 < −T ′ − ⌊−T ′/T⌋T < T . We thus conclude that if f(x + T ′) = f(x)
holds, then T ′ is an integer multiple of the fundamental period T .

The only question left unanswered is whether any periodic function
always has a fundamental period. And the answer is no, as the following
example—the so-called Dirichelet function—proves:

1Q =

{
1 if x ∈ Q

0 if x ̸∈ Q

The reasons for denoting this function by 1Q are unimportant for our
purposes.17 It has the property that any positive rational is a period, which
follows from the fact that given any rational r, r + α is rational if and
only if α is rational. Thus, α and r + α are either both rational, or both
irrational—and in either case, 1Q(α) = 1Q(r+ α).

However, for continuous functions, it does hold that any periodic func-
tion, if it is not a constant function, it has a fundamental period.
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Proposition B.1. Let f be a continuous and periodic function. Then, it has a
fundamental period if and only if it is not constant.
Proof. Wewill show that f is constant if and only if it has no fundamental
period (i.e., if we can find periods arbitrarily close to zero). (→) If f is
a constant function, then it is obvious that it is periodic, and that there
does not exist a smallest period. (←) If f has no fundamental period, but
is nonetheless a periodic function, then that means we can find a strictly
decreasing sequence of positive terms, {Tn}, such that Tn → 0. Now let
a, b be two distinct points of the domain of f. For any n, we can write
b − a = Tn⌊(b− a)/Tn⌋ + rn, with 0 ≤ rn < Tn (note this holds
regardless of whether b − a is positive or negative). Rearranging, we
have b− rn = a+ Tn⌊(b− a)/Tn⌋. As 0 ≤ rn < Tn and Tn → 0, by the
squeeze test18 we have rn → 0. Now, on the one hand, as every Tn is a
period of f, we have f(a+ Tn⌊(b− a)/Tn⌋) = f(a), which is to say that
all the terms of the sequence f(b−rn) are equal to f(a). But on the other
hand, limn→∞ b− rn = b, and as f is continuous, by lemma C.1 we have
limn→∞ f(b− rn) = f(limn→∞ b− rn) = f(b). Hence, we conclude that
f(b) = f(a)—and as a and b were arbitrary points of the domain of f,
we conclude that f is a constant function. ■

We finish with the following remark: it is straightforward to observe
that if we have a sequence Tn → T , such that for any n, we have f(x +
Tn) = f(x), where f is a continuous function, and x is any value in its
domain, then we must also have f(x+ T) = f(x). To see why this is, let
x be fixed; it is immediate that the sequence x + Tn converges to x + T .
Now, on the one hand, the sequence f(x + Tn) is constant—all its terms
are equal to f(x). On the other, because f is continuous, again via lemma
C.1, we have limn→∞ f(x+Tn) = f(limn→∞ x+Tn) = f(x+T). Thus we
conclude that f(x + T) = f(x). Observe that for this result, neither the
terms Tn, nor T need be positive. But if T = 0, we are left with a rather
trivial condition, that is true for any function, namely that f(x+0) = f(x).
Proposition B.1 also clarifies what happens when T = 0 and the terms Tn
are nonzero (if the terms are zero, then also T = 0, and again, the result
is trivial).19

C Proofs
The following lemma is needed for proving theorem 2.3.
Lemma C.1. Let X be a subset of R and f : X → R be a function. The
function f is continuous at point a ∈ X if and only if for every sequence {xn}
of points of X that converges to a, we have f(xn)→ f(a).
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Proof. Let {xn} be a sequence of points of X such that {xn} → a. By
definition of convergent sequence, this means that (ε ∈ R andn, p ∈ N):

∀ε > 0 ∃p ∀n n ≥ p⇒ |xn − a| < ε (C.2)
(→) We assume f is continuous at a, and want to show that this implies
{f(xn)}→ f(a). By definition of continuity, the following holds:

∀ε > 0 ∃δ > 0 ∀x ∈ X 0 < |x− a| < δ⇒ |f(x) − a| < ε (C.3)

The condition we want to show—{f(xn)}→ f(a)—translates too:

∀ε > 0 ∃p ∀n n ≥ p⇒ |f(xn) − f(a)| < ε (C.4)
The first observation, is that for any n such that xn = a, (C.4) holds
trivially, so we can assume xn ̸= a. For these, it follows from (C.3) that
given any real ε > 0, there exists a real δ > 0 such that ∀x ∈ X, 0 <

|xn − a| < δ ⇒ |f(xn) − f(a)| < ε. And from (C.2) we know that for
that δ, there exists p such that n ≥ p⇒ |xn − a| < δ. Combining these
two statements yields (C.4).
(←) We assume that {xn}→ a implies {f(xn)}→ f(a), for any arbitrary
sequence {xn} of points of X. We want to show that this in turn implies
that f is continuous at a, i.e., that limx→a f(x) = f(a). We will prove
this via the contrapositive, that is, we will assume that f is not continuous
at a, and show that in such a case, there exists a sequence {xn} such that
{xn}→ a and {f(xn)} ̸→ f(a).

So, if f is not continuous at a, this means that the following condition
holds:

∃ε > 0 ∀δ > 0 ∃x ∈ X 0 < |x− a| < δ∧ |f(x) − a| ≥ ε (C.5)

Fix an ε for which (C.5) holds. Then, if we set δ = 1, there exists at least
one value of x such that the sub-condition 0 < |x− a| < δ∧|f(x) − a| ≥
ε holds—let x1 equal that value of x. More generally, let xn be a value of
x for which the same sub-condition holds when δ = 1/n. It is clear that
{xn}→ a, but {f(xn)} ̸→ f(a), which concludes the proof. ■

Theorem 2.3 (Continuity of the inverse). Let a, b ∈ R be two reals,
with a < b, and let f : [a, b] → R be a continuous and strictly decreasing
function. Then f is a bijection from [a, b] to [f(b), f(a)], and its inverse, f−1

is also strictly decreasing, and continuous.
Proof. It is immediate that f being strictly monotone (decreasing in the
present case), it is also injective. We must show that for any x ∈ [a, b],
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f(x) ∈ [f(b), f(a)]. This is trivial for either x = a or x = b; for x ∈
]a, b[, f being strictly decreasing means that a < x < b implies f(a) >
f(x) > f(b). From here it also follows that [f(b), f(a)] is a nonempty
interval.

To show that f is surjective in [f(b), f(a)], we first note that as it is
continuous in [a, b], by the Intermediate Value Theorem, for any y ∈
[f(b), f(a)], there exists x ∈ [a, b] such that f(x) = y—and this x is
unique due to f being injective. Hence, f is bijective, and thus we can
define f−1 : [f(b), f(a)]→ [a, b].

To show that f−1 is also strictly decreasing, let y1, y2 ∈ [f(b), f(a)],
with y1 < y2, and let x1 = f−1(y1) ⇔ y1 = f(x1) and x2 = f−1(y2) ⇔
y2 = f(x2). Reasoning by contradiction, assume that f−1(y1) ≤ f−1(y2).
We have: x1 ≤ x2 ⇒ f(x1) ≥ f(x2) ⇒ y1 ≥ y2, which is a contradic-
tion.20 Thus we conclude that f−1(y1) > f−1(y2).

Our last task is to show that f−1 is continuous—and for this, we shall
use lemma C.1 to show that for any sequence {yn} in [f(b), f(a)] such
that {yn} → y0, we have {f−1(yn)

} → f−1(y0). As f is bijective,
for any yn there exists an unique xn such that yn = f(xn)—namely,
xn = f−1(yn). In particular, x0 = f−1(y0) ⇔ y0 = f(x0). Thus we can
rewrite {yn}→ y0 as {f(xn)}→ f(x0). Due to the continuity of f, if {xn}
is convergent, it must converge to x0—otherwise (i.e., if it converged to
any other value, say c ̸= x0), by lemma C.1 and the unicity of limits we
would have f(x0) = f(c), which is impossible as f is injective.21 To prove
that {xn} is indeed convergent, we first obverse that for anyn, xn ∈ [a, b],
which is a bounded subset of R. Hence, if {xn} is divergent, as neither it
nor any of its subsequences can diverge to (positive or negative) infinity,
it must be because there exist at least two subsequences that converge
to different limits.22 Let us then, suppose there exist two subsequences of
{xn}, {xni

} and {xnj

}, such that {xni
}→ ci and

{
xnj

} → cj, with ci ̸= cj.
As f is continuous, {f(xni

)} → f(ci) and
{
f(xnj

)
} → f(cj). However,

as both {xni
} and {xnj

} are subsequences of {xn}, {f(xni
)} and {f(xnj

)
}

are subsequences of {f(xn)}, which converges to f(x0)—and thus, so must
{f(xni

)} and {f(xnj
)
}. This entails f(ci) = f(cj) = f(x0), and f being in-

jective, we conclude ci = cj, which is a contradiction. Hence, {xn}→ x0.
We now have {f−1(yn)

}
=
{
f−1

[
f(xn)

]}
= {xn} → x0 = f−1(y0), i.e.,{

f−1(yn)
} → f−1(y0). As {yn} was an arbitrary convergent sequence,

by lemma C.1 we conclude that f−1 is continuous on [f(b), f(a)]. ■

Remark C.6. An analogous result also holds when f is strictly increasing—
in which case, f−1 will also be strictly increasing. △

Theorem 2.11 (Limit of the derivative). Let X be a subset of R and a an
interior point of X, and f : X → R a function continuous in X and differen-
tiable in X \ {a}, but such that limx→a f

′(x) = l. Then f ′(a) = l.
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Proof. We want to prove that:

∀ε > 0 ∃δ > 0 ∀x ∈ X \ {a} 0 < |x− a| < δ⇒ ∣∣∣∣f(x) − f(a)

x− a
− l

∣∣∣∣ < ε

(C.7)
Applying Lagrange’s theorem to f in the closed interval with extrema

a and x, we know that there exists c (dependent on x) such that:∣∣∣∣f(x) − f(a)

x− a
− l

∣∣∣∣ = |f ′(c) − l| (C.8)

Now limx→a f
′(x) = l means that:

∀ε > 0 ∃δ > 0 ∀x ∈ X \ {a} 0 < |x− a| < δ⇒ |f ′(x) − l| < ε (C.9)
Thus, given any ε > 0, we chose δ > 0 so as to verify the implication

in (C.9). For any x such that 0 < |x− a| < δ, Lagrange’s theorem also
tells us that the c that corresponds to that x according to (C.8), belongs to
the open interval with extrema a and x. This means that 0 < |c− a| <
δ—from which we have |f ′(c) − l| < ε. In other words, for any x such
that 0 < |x− a| < δ, we have

∣∣(f(x) − f(a)
)
/(x− a) − l

∣∣ < ε. It is
now immediate that (C.7) holds.

■
Proposition 3.2. If there exists k ≥ 0 such that for any n ≥ 0 we have∣∣f(n)(x)∣∣ ≤ k for all x in a neighbourhood of x0, then f(x) equals its Taylor
series for any x in that neighbourhood.
Proof. Let X be a neighbourhood of x0 verifying the required conditions,
and let x ∈ X. Apply proposition 3.1 to f, and set

Sn(x) =

n∑
i=0

(
f(i)(x0)(x− x0)

i
)
/i!

We have:
f(n+1)(c)

(n+ 1)!
(x− x0)

n+1 = f(x) − Sn(x)

for some c strictly between x and x0—and thus, c ∈ X. We have:

|f(x) − Sn(x)| =
∣∣∣f(n+1)(c)

∣∣∣ · ∣∣(x− x0)
n+1

∣∣
(n+ 1)!

≤ k
|(x− x0)|n+1

(n+ 1)!

Now by the ratio test,23 one sees that∑yn/n! is convergent, for any y ∈
R—and so, yn/n!→ 0 when n→ +∞. Hence, k(|(x− x0)|n+1)/((n+
1)!)→ 0, entailing f(x) − Sn(x)→ 0 for every x in a neighbourhood of
x0, and thus, f equals its Taylor series in that neighbourhood. ■
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Notes
1. For an example of this approach, see Tao [4, §4.7]. Being defined for any value in

C, they are of course defined for all of R.
2. Cf. Tao, loc. cit.
3. As is conventional, counter-clockwise angles are considered positive, and clock-

wise angles are considered negative.
4. Recall that if u(x) is a function, then (

√
u(x)) ′ = u ′(x)/(2

√
u(x)).

5. See, e.g., Tao [5, Prop. 10.1.10, in §10].
6. Recall that ⌊x⌋ is the largest integer not greater than the real x. To show unique-

ness, suppose there exist θ, θ ′ and k, k ′ such that θ+2πk = θ ′+2πk ′. This is the same
as θ − θ ′ = 2π(k ′ − k). But as both θ and θ ′ are in [0, 2π[, θ − θ ′ ∈ ]−2π, 2π[—and
the only multiple of 2π in that interval is 0. Hence, k ′ − k = 0 ⇔ k ′ = k, which of
course entails θ = θ ′.
7. Some of the “converse” results below, are needed in §4, when discussing the peri-

odicity of sine and cosine.
8. Cf. the discussion after (2.10), if needed.
9. A neighbourhood of a point a is an open interval of the form ]a − ε, a + ε[, for

some real number ε > 0.
10. It is a simple exercise to apply the ratio test—see for example, Tao [5, §7.5]—to

show that both series have an infinite radius of convergence, meaning they converge
for any x ∈ R—just as we would expect, since our sine and cosine functions are also
defined all over R.
11. As a “sanity check,” it is immediate to verify that according to their respective

Taylor expansions, we have cos 0 = 1 and sin 0 = 0, just as computed in §2. Also, power
series—of which the Taylor series is a particular case—are indefinitely differentiable,
and so term-wise differentiation shows that sin ′ x = cos x and cos ′ x = − sin x—which
again coincides with our previous finding in §2.
12. Recall that by construction, we already expect for 2π to be a period of both sine

and cosine. Cf. (2.10).
13. In appendix B, it is shown that every continuous periodic and non-constant func-

tion, has a smallest period. The previous assertion about periodic functions is also proved
therein.
14. Tao [4, §4.7], for example, defines π as the smallest zero of the sin function in

]0,+∞[.
15. In fact, in other, so-called non-Euclidean geometries, that ratio can be different

for different circles! For example, in spherical geometry, you can have ‘π’= 2! See the
answer of user SRM (April 21st, 2014), on this Math StackExchange thread [1].
16. But note that only the positive multiples of T are periods of f, because by defini-

tion, a period has to be positive.
17. Nevertheless, for the curious reader, the explanation is as follows: the Dirichelet

function is what is called the indicator function for the set of rational numbers, Q. Gener-
ically, given a set X, its indicator function, denoted 1X, is a function that evaluates to 1

for any element that belongs to X, and 0 for any element that doesn’t.
18. Tao [5, Corollary 6.4.14 in §6.4], for example.
19. Proposition B.1 requires that {Tn} be a strictly decreasing sequence of positive

terms; however, given a sequence {T ′
n} of nonzero terms that converges to zero, we

can construct a strictly decreasing sequence {Tn}, having only positive terms, that also
converges to zero. Here is how: let T1 = T ′

1 , if T ′
1 is positive, and −T ′

1 if it is negative.
Let T ′

i be the next term of sequence T ′
n verifying |T ′

i | < |T ′
1 | (one such term can always

be found, because T ′
n → 0). Set T2 = T ′

i , if T ′
i is positive, and −T ′

i if it is negative. And
so on, and so forth…
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20. The step x1 ≤ x2 ⇒ f(x1) ≥ f(x2) might need additional justification. If x1 =
x2, then of course we have f(x1) = f(x2). And as f is strictly decreasing, x1 < x2 ⇒
f(x1) > f(x2). Hence, x1 ≤ x2 implies either f(x1) = f(x2) or f(x1) > f(x2), i.e.,
implies f(x1) ≥ f(x2).
21. Note that as all the terms of {xn} are in [a, b], so must the putative limit c.
22. Recall that by the Bolzano-Weierstraß theorem any bounded sequence has a con-

vergent subsequence.
23. Cf. note 10 above.
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