\usetikzlibrary{arrows.meta, bending, angles, decorations.pathreplacing}


  x=4cm, y=4cm, >=Triangle,
  bracy/.style={decoration={brace, amplitude=2mm}},
  dec/.style={decorate, draw, solid}

% Points P, Q, R, and the origin O.
\coordinate[label=below right:$O$]         (O) at (0,0)
 coordinate[label=above left:{$P(x,y)$}] (P) at (120:1)
 coordinate[label=below left:$Q$]        (Q) at (P|-O)
 coordinate[label=below right:{$R(1, 0)$}] (R) at (1,0);

% Points for X and Y axis.
\coordinate (x-) at (xyz cs: x=-1.1)
  coordinate (x+) at (xyz cs: x=+1.1)
  coordinate (y-) at (xyz cs: y=-0.1)
  coordinate (y+) at (xyz cs: y=+1.1);

% Section of unit circle corresponding to angle theta.
\filldraw (R) [fill=blue!50!white, draw=white] arc [start angle=0,end angle=120, radius=1] -- (Q) -- (R);

% Rectangle triangle PQO.
\filldraw (O) [fill=blue!20!white] (P) -- (Q) -- (O);

% Section of (the upper half of) the unit circumference that does NOT
% correspond to angle theta.
\draw (-1, 0) arc [radius=1, start angle=180, end angle = 120];

% Section of unit circumference that corresponds to angle theta.
\draw (P) [blue, very thick] arc [radius=1, start angle=120, end angle = 0];
% \draw (R) [red, very thick, domain=0:120] plot ({cos(\x)}, {sin(\x)});

% Dotted label to indicate the length of the arc corresponding to angle theta,
% is also theta.
\draw (1.03, 0) [dotted, to-to] arc[start angle=0, end angle=120, radius=1.03]
  node[midway, fill=white, above=2mm, right=1mm] {$\theta$};

% Mark points P and R.
\fill (P) circle [radius=2pt];
\fill (R) circle [radius=2pt];

% Line from Q to P, with decorations.
\draw (Q) -- (P) [postaction={dec, bracy}]
  node[midway, left=2mm] {$y =$}
  node[near end, below = 12mm, left=2mm] {$\sin \theta$};

% Line from O to Q, with decorations.
\draw[densely dotted] (O) -- (Q) [postaction={dec, bracy}]
  node[midway, below=2mm] {$x=\cos \theta$};

% Line from O to P.
\draw (O) -- (P) ;

% Actually draw X and Y axis.
\draw[->] (x-) -- (x+) ;
\draw[->] (y-) -- (y+) ;

\pic[draw, black, thick, ->, pic text=$\theta$, angle radius=7mm] {angle=R--O--P};